Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Human body composition: yesterday, today, and tomorrow

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Jackson AA, Johnson M, Durkin K, Wootton S. Body composition assessment in nutrition research: value of BIA technology. Eur J Clin Nutr. 2013;67:S71–8. https://doi.org/10.1038/ejcn.2012.167.

    Article  PubMed  Google Scholar 

  2. Piernas C, Wang D, Du S, Zhang B, Wang Z, Su C, et al. The double burden of under- and overnutrition and nutrient adequacy among Chinese preschool and school-aged children in 2009-2011. Eur J Clin Nutr. 2015;69:1323–9.

    Article  CAS  Google Scholar 

  3. Villamor E, Saathoff E, Mugusi F, Bosch RJ, Urassa W, Fawzi WW. Wasting and body composition of adults with pulmonary tuberculosis in relation to HIV-1 coinfection, socioeconomic status, and severity of tuberculosis. Eur J Clin Nutr. 2006;60:163–71.

    Article  CAS  Google Scholar 

  4. Wang Z, Wang Z-M, Heymsfield SB. History of the study of human body composition: a brief review. J Hum Biol. 1999;11:157–65.

    Article  CAS  Google Scholar 

  5. Clarys JP, Martin AD,Drinkwater DT. Gross tissue weights in the human body by cadaver dissection. Hum Biol. 1984;56:459–73. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=6489991.

    CAS  PubMed  Google Scholar 

  6. Hevesy G, Hofer R. Elimination of water from the human body. Nature. 1934;134:879.

    Article  Google Scholar 

  7. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sport Exerc. 1995;27:1692–7.

    Article  CAS  Google Scholar 

  8. McCrory MA, Gomez TD,Bernauer EM,Molé PA. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc. 1995;27:1686–91.http://ovidsp.tx.ovid.com.ezproxy.nottingham.ac.uk/sp-3.18.0b/ovidweb.cgi?WebLinkFrameset=1&S=DMPCFPHBFEDDDAOMNCJKJBOBPCHEAA00&returnUrl=ovidweb.cgi%3FMain%2BSearch%2BPage%3D1%26S%3DDMPCFPHBFEDDDAOMNCJKJBOBPCHEAA00&directlink=http%3A%2F%2Fgraphics.tx.ovid.

    Article  CAS  Google Scholar 

  9. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23:1226–43.

    Article  Google Scholar 

  10. Kyle UG, Bosaeus I, De Lorenzo AD, Go M, Lilienthal B, Deurenberg P et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr Edinburgh Scotl. 2004. http://www.ncbi.nlm.nih.gov/pubmed/15380917.

  11. Murphy AJ, Ellis KJ, Kurpad AV, Preston T, Slater C. Total body potassium revisited. Eur J Clin Nutr. 2014;68:153–4. https://doi.org/10.1038/ejcn.2013.262%5Cnhttp://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=94277769&site=ehost-live.

    Article  CAS  PubMed  Google Scholar 

  12. Pierson RN. A brief history of body composition—from F.D. Moore to the new reference man. Acta Diabetol. 2003;40:114–6.

    Article  Google Scholar 

  13. Thibault R, Genton L, Pichard C. Body composition: why, when and for who? Clin Nutr. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22296871.

  14. Andreoli A, Garaci F,Cafarelli FP,Guglielmi G. Body composition in clinical practice. Eur J Radiol. 2016;85:1461–8.http://www.ncbi.nlm.nih.gov/pubmed/26971404.

    Article  Google Scholar 

  15. Müller MJ, Bosy-Westphal A, Later W, Haas V, Heller M. Functional body composition: insights into the regulation of energy metabolism and some clinical applications. Eur J Clin Nutr. 2009;63:1045–56.

    Article  Google Scholar 

  16. Gallagher D, Albu J, He Q, Heshka S, Boxt L, Krasnow N, et al. Small organs with a high metabolic rate explain lower resting energy expenditure in African American than in white adults. Am J Clin Nutr. 2006;83:1062–7.

    Article  CAS  Google Scholar 

  17. Borga M, West J, Bell JD, Harvey NC, Romu T, Heymsfield SB et al. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med. 2018. http://jim.bmj.com/content/early/2018/03/24/jim-2018-000722.abstract.

  18. Bourgeois B, Ng BK, Latimer D, Stannard CR, Romeo L, Li X, et al. Clinically applicable optical imaging technology for body size and shape analysis: comparison of systems differing in design. Eur J Clin Nutr. 2017;71:1329–35.

    Article  CAS  Google Scholar 

  19. Heymsfield SB, Pietrobelli A,Wang Z,Saris WHM. The end of body composition methodology research? Curr Opin Clin Nutr Metab Care. 2005;8:591–4. http://www.ncbi.nlm.nih.gov/pubmed/16205457.

    Article  CAS  Google Scholar 

  20. Talwar Y, Karthikeyan S. Smartphone—a user-friendly device to deliver affordable healthcare—a practical paradigm. J Heal Med Informatics. 2016. https://www.omicsonline.org/open-access/smartphone--a-userfriendly-device-to-deliver-affordable-healthcare--apractical-paradigm-2157-7420-1000232.php?aid=74665.

  21. Choi A, Kim JY, Jo S, Jee JH, Heymsfield SB, Bhagat YA, et al. Smartphone-based bioelectrical impedance analysis devices for daily obesity management. Sensors. 2015;15:22151–66.

    Article  Google Scholar 

  22. Lee Y-G, Jeong WS,Yoon G. Smartphone-based mobile health monitoring. Telemed e-Health. 2012;18:585–90.http://online.liebertpub.com/doi/abs/10.1089/tmj.2011.0245.

    Article  Google Scholar 

  23. Heymsfield SB, Kim JY, Bhagat YA, Zheng J, Choi A, Jo S et al. Mobile evaluation of human energy balance and weight control:potential for future developments. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:8201–4. https://doi.org/10.1109/EMBC.2015.7320298.

  24. Farina GL, Spataro F, de Lorenzo A, Lukaski H. A smartphone application for personal assessments of body composition and phenotyping. Sensors (Basel). 2016;16:2163.

    Article  Google Scholar 

  25. Villa F, Magnani A, Maggioni MA, Stahn A, Rampichini S, Merati G et al. Wearable multi-frequency and multi-segment bioelectrical impedance spectroscopy for unobtrusively tracking body fluid shifts during physical activity in real-field applications: a preliminary study. 2016:16050673.

  26. Lee CH, Yoon H-J. Medical big data: promise and challenges. Kidney Res Clin Pract. 2017;36:3–11.

    Article  Google Scholar 

  27. Wootton S, Durkin K, Jackson A. Quality control issues related to assessment of body composition. Food Nutr Bull. 2014;35:S79–85.

    Article  Google Scholar 

  28. González-Correa CH,Caicedo-Eraso JC. Bioelectrical impedance analysis (BIA): a proposal for standardization of the classical method in adults. J Phys Conf Ser. 2012;407:12018. http://stacks.iop.org/1742-6596/407/i=1/a=012018?key=crossref.fdb722c334700f288fc85db2dc7015ab.

    Article  Google Scholar 

  29. Brantlov S, LCLC Ward, Jødal L, Rittig S, Lange A. Critical factors and their impact on bioelectrical impedance analysis in children: a review. J Med Eng Technol. 2017;41:22–35.

    Article  Google Scholar 

  30. Brantlov S, Jødal L, Lange A, Rittig S, Ward LC, Brantlov S, et al. Standardisation of bioelectrical impedance analysis for the estimation of body composition in healthy paediatric populations: a systematic review. J Med Eng Technol. 2017;0:1–20. https://doi.org/10.1080/03091902.2017.1333165.

    Article  Google Scholar 

  31. Sardinha LB. Functional body composition: need for a new agenda. Arch Exerc Heal Dis. 2012;3:183–7.

    Article  Google Scholar 

  32. Müller MJ, Baracos V, Bosy-Westphal A, Dulloo AG, Eckel J, Fearon KCH et al. Functional body composition and related aspects in research on obesity and cachexia: Report on the 12th Stock Conference held on 6 and 7 September 2013 in Hamburg, Germany. Obes Rev. 2014;15:640–56.

    Article  Google Scholar 

  33. Vartsky D,Ellis KJ, Cohn SH. In vivo measurement of body nitrogen by analysis of prompt gammas from neutron capture. J Nucl Med. 1979;20:1158–65.http://www.ncbi.nlm.nih.gov/pubmed/536776.

    CAS  PubMed  Google Scholar 

  34. Wilson JP, Strauss BJ, Fan B, Duewer FW, Shepherd JA. Improved 4-compartment body-composition model for a clinically accessible measure of total body protein. Am J Clin Nutr. 2013;97:497–504.

    Article  CAS  Google Scholar 

  35. Wang Z-M, Pierson RN, Heymsfield S. The five-level model: a new approach to organizing. Am J Clin Nutr. 1992;56:19–28.

    Article  CAS  Google Scholar 

  36. Wang ZM, Deurenberg P, Guo SS, Pietrobelli A, Wang J, Pierson RN, et al. Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes Relat Metab Disord. 1998;22:329–37.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh C. Ward.

Ethics declarations

Conflict of interest

The author provides consultancy services to ImpediMed Ltd. ImpediMed Ltd. had no involvement in the conception or writing of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, L.C. Human body composition: yesterday, today, and tomorrow. Eur J Clin Nutr 72, 1201–1207 (2018). https://doi.org/10.1038/s41430-018-0210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0210-2

This article is cited by

Search

Quick links