Clinical nutrition

Distribution and determinants of retinol in Norwegian adolescents, and its relation to bone mineral density: the Tromsø Study: Fit Futures

Abstract

Background/objectives

Sufficient vitamin A levels are important for many functions—and both too little and too much may have detrimental health effects. The aim of the study was to describe the distribution of retinol levels in Norwegian adolescents, the relation between lifestyle factors and retinol levels, and the relation between retinol levels and bone mineral density (BMD).

Subjects/methods

Serum retinol was measured in 414 girls and 474 boys aged 15–19 years, participating in the Tromsø Study: Fit Futures. Questionnaires regarding health and lifestyle factors were filled in, and physical examinations, body composition, and bone mineral density measurements (DEXA) performed. Multiple regression analyses were used to discover associations between retinol and exposure variables.

Results

Retinol levels ranged from 0.26 to 6.46 μmol/L with a median (2.5–97.5 percentile) of 2.35 (1.01–4.67) μmol/L. There was no gender difference. In the multivariate models, fat mass, albumin level, physical activity, and lunch habits were positively associated with retinol levels in boys. In girls, fat mass and height were negatively associated with retinol levels, and lean mass, vitamin D, calcium, total cholesterol, and the use of contraceptives were positively associated with retinol levels (p < 0.05). The models explained 18.3% and 14.6% of the variation (R2) in girls and boys, respectively. Retinol levels were not independently associated with BMD.

Conclusion

Retinol levels in Norwegian adolescents are higher than reported elsewhere, and are to a low degree explained by lifestyle and physical measurements. No independent association with BMD was found.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66:606–30.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Tanumihardjo SA. Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr. 2011;94:658s–65s.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nordic Council of Ministers 2014. Nordic Nutrition Recommendations 2012: integrating nutrition and physical activity. Nord. 2014;5:335–348.

    Google Scholar 

  4. 4.

    Borovaya A, Dombrowski Y, Zwicker S, Olisova O, Ruzicka T, Wolf R, et al. Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris. Arch Dermatol Res. 2014;306:689–700.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Blomhoff R, Beckman-Sundh U, Brot C, Solvoll K, Steingrimsdóttir L, Hauger Carlsen M. Health risks related to high intake of preformed retinol (vitamin A) in the Nordic countries. Nordic Council of Ministers. TemaNord 2003:27-36.

  6. 6.

    TINE [internet]. Oslo. Tinemelk Lettmelk 0.7% fett. http://www.tine.no/merkevarer/tinemelk/produkter/tinemelk-lettmelk-0-7-fett

  7. 7.

    Sauvant P, Cansell M, Atgie C. Vitamin A and lipid metabolism: relationship between hepatic stellate cells (HSCs) and adipocytes. J Physiol Biochem. 2011;67:487–96.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Wongsiriroj N, Jiang H, Piantedosi R, Yang KJ, Kluwe J, Schwabe RF, et al. Genetic dissection of retinoid esterification and accumulation in the liver and adipose tissue. J Lipid Res. 2014;55:104–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Nasjonal brukerhåndbok i Medisinsk Biokjemi [internet]. Vitamin A, P [Updated: 2014.09.09 Cited: 2014.09.09]. http://brukerhandboken.no/index.php?action=showtopic&topic=4f69553a168ffb1aebfb&j=1

  10. 10.

    Holvik K, Ahmed LA, Forsmo S, Gjesdal CG, Grimnes G, Samuelsen SO, et al. No increase in risk of hip fracture at high serum retinol concentrations in community-dwelling older Norwegians: the Norwegian Epidemiologic Osteoporosis Studies. Am J Clin Nutr. 2015;5:1289–96.

    Article  CAS  Google Scholar 

  11. 11.

    Rothman KJ, Moore LL, Singer MR, Nguyen US, Mannino S, Milunsky A. Teratogenicity of high vitamin A intake. N Engl J Med. 1995;333:1369–1373.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Michaëlsson K, Lithell H, Vessby B, Melhus H. Serum retinol levels and the risk of fracture. N Eng J Med. 2003;348:287–294.

    Article  Google Scholar 

  13. 13.

    Opotowsky AR, Bilezikian JP. Serum vitamin A concentration and the risk of hip fracture among women 50 to 74 years old in the United States: a prospective analysis of the NHANES I follow-up study. Am J Med. 2004;117:169–174.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Melhus H, Michaëlsson K, Kindmark A, Bergström R, Holmberg L, Mallmin H, et al. Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann Intern Med. 1998;129:770–778.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Valtuena J, Breidenassel C, Folle J, González-Gross M. Retinol, β-carotene, α-tocopherol and vitamin D status in European adolescents; regional differences an variability: a review. Nutr Hosp. 2011;26:280–288.

    CAS  PubMed  Google Scholar 

  16. 16.

    World Health Organization–Health for the world’s adolescents [internet]. Recognizing adolescence [Cited: 2014]. http://apps.who.int/adolescent/second-decade/section2/page1/recognizing-adolescence.html

  17. 17.

    Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335:194.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–1243.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Winther A, Dennison E, Ahmed LA, Furberg AS, Grimnes G, Jorde R, et al. The Tromsø Study: fit futures: a study of Norwegian adolescents' lifestyle and bone health. Arch Osteoporos. 2014;9:185.

    Article  PubMed  Google Scholar 

  20. 20.

    Bratberg GH, Nilsen TI, Holmen TL, Vatten LJ. Early sexual maturation, central adiposity and subsequent overweight in late adolescence. A four-year follow-up of 1605 adolescent Norwegian boys and girls: the Young HUNT study. BMC Public Health. 2007;7:54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Brooks-Gunn J, Warren MP, Rosso J, Gargiulo J. Validity of self-report measures of girls’ pubertal status. Child Dev. 1987;58:829–841.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17:117–133.

    CAS  Article  Google Scholar 

  23. 23.

    Graff-Iversen S, Anderssen SA, Holme IM, Jenum AK, Raastad T. Two short questionnaires on leisure-time physical activity compared with serum lipids, anthropometric measurements and aerobic power in a suburban population from Oslo,
Norway. Eur J Epidemiol. 2008;23:167–174.

    Article  PubMed  Google Scholar 

  24. 24.

    World Health Organization. Serum retinol concentrations for determining the prevalence of vitamin A deficiency in populations [Internet]. WHO/NMH/NHD/MNM/11.3. 2011: 1–5. http://www.who.int/vmnis/indicators/retinol/en/

  25. 25.

    World Health Organization and Food and Agriculture Organization of the United Nations 2004. Vitamin and mineral requirements in human nutrition. 2nd ed. China: Sun Fung; 2004; p. 341 pages.

  26. 26.

    Min KB, Min JY. Relation of serum vitamin A levels to all-cause and cause-specific mortality among older adults in the NHANES III population. Nutr Metab Cardiovasc Dis. 2014;24:1197–203.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ansari EA, Sahni K, Etherington C, Morton A, Conway SP, Moya E, et al. Ocular signs and symptoms and vitamin A status in patients with cystic fibrosis treated with daily vitamin A supplements. Br J Ophthalmol. 1999;83:688–691.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Grimnes G, Almaas B, Eggen AE, Emaus N, Figenschau Y, Hopstock LA, et al. Effect of smoking on the serum levels of 25-hydroxyvitamin D depends on the assay employed. Eur J Endocrinol. 2010;163:339–48.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Valtuena J, De Henauw S, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016;103:1033–44.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Albuquerque M, Diniz A, Arruda I. Elevated serum retinol and low beta-carotene but not alpha-tocopherol concentrations are associated with dyslipidemia in Brazilian adolescents. J Nutr Sci Vitaminol. 2016;62:73–80.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Systematic review: primary and secondary prevention of gastrointestinal cancers with antioxidant supplements. Aliment Pharmacol Ther. 2008;28:689–703.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Jeong NH, Song ES, Lee JM, Lee KB, Kim MK, Cheon JE, et al. Plasma carotenoids, retinol and tocopherol levels and the risk of ovarian cancer. Acta Obstet Gynecol Scand. 2009;88:457–62.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Weiping L, Qingfeng C, Shikun M, Xiurong L, Hua Q, Xiaoshu B, et al. Elevated serum RBP4 is associated with insulin resistance in women with polycystic ovary syndrome. Endocrine. 2006;30:283–7.

    Article  PubMed  Google Scholar 

  34. 34.

    Wickenheisser JK, Nelson-DeGrave VL, Hendricks KL, Legro RS, Strauss JF 3rd, McAllister JM. Retinoids and retinol differentially regulate steroid biosynthesis in ovarian theca cells isolated from normal cycling women and women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:4858–65.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Jiang Y, Li C, Chen L, Wang F, Zhou X. Potential role of retinoids in ovarian physiology and pathogenesis of polycystic ovary syndrome. Clin Chim Acta. 2017;469:87–93.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Cruz JA, Moreiras-Varela O, van Staveren WA, Trichopoulou A, Roszkowski W.Intakes of vitamins and minerals. Eur J Clin Nutr. 1991;45:121–38.

    PubMed  Google Scholar 

  37. 37.

    Totland TH, Melnæs BK, Lundberg-Hallén N, Helland-Kigen KM, Lund-Blix NA, Myhre JB, et al. Norkost 3. En landsomfattende kostholdsundersøkelse blant menn og kvinner i Norge i alderen 18–70 år, 2010–11. Helsedirektoratet 2012

  38. 38.

    Youtick JJ, Jung CT, Bronaugh RL. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: significance of the skin reservoir and prediction of systemic absorption. Toxicol Appl Pharmacol. 2008;231:117–21.

    Article  CAS  Google Scholar 

  39. 39.

    Herbeth B, Spyckerelle Y, Deschamps JP. Determinants of plasma retinol, beta-carotene, and alpha-tocopherol during adolescence. Am J Clin Nutr. 1991;54:884–9.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Gracia-Marco L, Valtuena J, Ortega FB, Perez-Lopez FR, Vicente-Rodriguez G, Breidenassel C, et al. Iron and vitamin status biomarkers and its association with physical fitness in adolescents: the HELENA study. J Appl Physiol. 2012;113:566–573.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Vahlquist A, Johnsson Kg, Nygren. Vitamin A transporting plasma proteins and female sex hormones. Am J Clin Nutr. 1979;32:1433–1438.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Tang G, Qin J, Dolnikowski GG, Russell RM. Short-term (intestinal) and long-term (postintestinal) conversion of beta-carotene to retinol in adults as assessed by a stable-isotope reference method. Am J Clin Nutr. 2003;78:259–66.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Oberg J, Jorde R, Almås B, Emaus N, Grimnes G. Vitamin D deficiency and lifestyle risk factors in a Norwegian adolescent population. Scand J Public Health. 2014;7:593–602.

    Article  Google Scholar 

  44. 44.

    Furr HC, Green MH, Haskell M, Mokhtar N, Nestel P, Newton S, et al. Stable isotope dilution techniques for assessing vitamin A status and bioefficacy of provitamin A carotenoids in humans. Public Health Nutr. 2005;8:596–607.

    Article  PubMed  Google Scholar 

  45. 45.

    Tanumihardjo SA. Assessing vitamin A status: past, present and future. J Nutr. 2004;134:290S–3S.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to the study participants, the staff at the Centre for Clinical Research and Education and the Fit Futures administration.

Funding:

The present study was supported by the The Northern Norway Regional Health Authority and UiT—The Arctic University of Norway.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. S. W. Teigmo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teigmo, M.S.W., Gundersen, T.E., Emaus, N. et al. Distribution and determinants of retinol in Norwegian adolescents, and its relation to bone mineral density: the Tromsø Study: Fit Futures. Eur J Clin Nutr 72, 1373–1384 (2018). https://doi.org/10.1038/s41430-018-0193-z

Download citation

Search

Quick links