Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Physical activity but not sedentary time is associated with vitamin D status in adolescents: study of cardiovascular risk in adolescents (ERICA)



The association between active lifestyle components and vitamin D status in adolescents remains relatively unexplored. We aimed to investigate independent and joint associations of moderate-to-vigorous physical activity (MVPA) and screen time with serum 25-hydroxyvitamin D [25(OH)D] concentrations in adolescents.


This multicenter cross-sectional study involved 1152 Brazilian adolescents (age 12–17 years). Serum 25(OH)D was measured in a single laboratory and categorized as ≤20, 21–29, or ≥30 ng/mL. Demographic and lifestyle characteristics were assessed by self-reports. Ordered logistic regression was used to investigate potential associations of being physically active (MVPA ≥ 300 min/week) and excessive screen time (>2 h/day) with serum 25(OH)D concentrations.


The prevalence of higher serum 25(OH)D concentrations (≥30 ng/mL) was 36.4%. In adjusted models, being physically active was associated with higher serum 25(OH)D concentrations only in boys [proportional odds ratio (POR) = 2.04, 95% CI 1.42–2.93], while excessive screen time was not associated with serum 25(OH)D. Adolescents who were physically active and limited their screen time had higher odds of a higher serum 25(OH)D concentration, but the association was significant only for boys (POR = 2.11, 95% CI 1.19–3.74).


MVPA may play an important role in increasing serum 25(OH)D concentrations in adolescence, especially for boys, regardless of screen time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96:365–408.

    CAS  Article  Google Scholar 

  2. 2.

    Chowdhury R, Kunutsor S, Vitezova A, Oliver-Williams C, Chowdhury S, Kiefte-de-Jong JC, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ. 2014;348:g1903.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zittermann A, Iodice S, Pilz S, Grant WB, Bagnardi V, Gandini S. Vitamin D deficiency and mortality risk in the general population: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2012;95:91–100.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Liu L, Chen M, Hankins SR, Nunez AE, Watson RA, Weinstock PJ, et al. Serum 25-hydroxyvitamin D concentration and mortality from heart failure and cardiovascular disease, and premature mortality from all-cause in United States adults. Am J Cardiol. 2012;110:834–9.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Renzaho AM, Halliday JA, Nowson C. Vitamin D, obesity, and obesity-related chronic disease among ethnic minorities: a systematic review. Nutrition. 2011;27:868–79.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Substance Abuse and Mental Health Services Administration (SAMHSA). 2014 National Survey on Drug Use and Health (NSDUH). Alcohol use, binge alcohol use, and heavy alcohol use in the past month, by detailed age category, 2013 and 2014.

  7. 7.

    El-Hajj Fuleihan G. Vitamin D deficiency in the Middle East and its health consequences for children and adults. Clin Rev Bone Mineral Metab. 2009;7:77–93.

    CAS  Article  Google Scholar 

  8. 8.

    Gonzalez-Gross M, Valtuena J, Breidenassel C, Moreno LA, Ferrari M, Kersting M, et al. Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr. 2012;107:755–64.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Peters BS, dos Santos LC, Fisberg M, Wood RJ, Martini LA. Prevalence of vitamin D insufficiency in Brazilian adolescents. Ann Nutr Metab. 2009;54:15–21.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Santos BR, Mascarenhas LP, Satler F, Boguszewski MC, Spritzer PM. Vitamin D deficiency in girls from South Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatr. 2012;12:62

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    CAS  Article  Google Scholar 

  12. 12.

    Ferreira RW, Rombaldi AJ, Ricardo LI, Hallal PC, Azevedo MR. [Prevalence of sedentary behavior and its correlates among primary and secondary school students]. Rev Paul Pediatr. 2016;34:56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Cureau FV, da Silva TL, Bloch KV, Fujimori E, Belfort DR,de Carvalho KM, et al. ERICA: leisure-time physical inactivity in Brazilian adolescents. Rev Saude Publica. 2016;50 (Suppl. 1):4s

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Schaan CW, Cureau FV, Bloch KV, Carvalho KMB, Ekelund U, Schaan BD. Prevalence and correlates of screen time among Brazilian adolescents: findings from a country-wide survey. Appl Physiol Nutr Metab. 2018. e-pub ahead of print 2018/02/07.

  15. 15.

    Jones SA, Wen F, Herring AH, Evenson KR. Correlates of US adult physical activity and sedentary behavior patterns. J Sci Med Sport. 2016;19:1020–7. doi: S1440-2440(16)30005-6

    Article  Google Scholar 

  16. 16.

    Ottevaere C, Huybrechts I, Benser J, De Bourdeaudhuij I, Cuenca-Garcia M, Dallongeville J, et al. Clustering patterns of physical activity, sedentary and dietary behavior among European adolescents: The HELENA study. BMC Public Health. 2011;11:328.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    de Lucena JM, Cheng LA, Cavalcante TL, da Silva VA, de Farias Junior JC. [Prevalence of excessive screen time and associated factors in adolescents]. Rev Paul Pediatr. 2015;33:407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Young DR, Hivert MF, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, et al. Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation. 2016;134:e262–79.

    Article  PubMed  Google Scholar 

  19. 19.

    Dong Y, Pollock N, Stallmann-Jorgensen IS, Gutin B, Lan L, Chen TC, et al. Low 25-hydroxyvitamin D levels in adolescents: race, season, adiposity, physical activity, and fitness. Pediatrics. 2010;125:1104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics. 2009;124:e362–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hibler EA, Sardo Molmenti CL, Dai Q, Kohler LN, Warren Anderson S, Jurutka PW, et al. Physical activity, sedentary behavior, and vitamin D metabolites. Bone. 2016;83:248–55.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bloch KV, Szklo M, Kuschnir MCC, Abreu GA, Barufaldi LA, Klein CH, et al. The study of cardiovascular risk in adolescents—ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents. BMC Public Health. 2015; 15.

  23. 23.

    Vasconcellos MT, Silva PL, Szklo M, Kuschnir MC, Klein CH, Abreu Gde A, et al. Sampling design for the Study of Cardiovascular Risks in Adolescents (ERICA). Cad Saude Publica. 2015;31:921–30.

    Article  PubMed  Google Scholar 

  24. 24.

    Cureau FV, Bloch KV, Henz A, Schaan CW, Klein CH, Oliveira CL, et al. Challenges for conducting blood collection and biochemical analysis in a large multicenter school-based study with adolescents: lessons from ERICA in Brazil. Cad Saude Publica. 2017;33:e00122816.

    Article  PubMed  Google Scholar 

  25. 25.

    Wagner D, Hanwell HE, Vieth R. An evaluation of automated methods for measurement of serum 25-hydroxyvitamin D. Clin Biochem. 2009;42:1549–56.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Sallis JF, Strikmiller PK, Harsha DW, Feldman HA, Ehlinger S, Stone EJ, et al. Validation of interviewer- and self-administered physical activity checklists for fifth grade students. Med Sci Sports Exerc. 1996;28:840–51.

    CAS  Article  Google Scholar 

  27. 27.

    de Farias JC Jr, Lopes Ada S, Mota J, Santos MP, Ribeiro JC, Hallal PC. [Validity and reproducibility of a physical activity questionnaire for adolescents: adapting the Self-Administered Physical Activity Checklist]. Rev Bras Epidemiol. 2012;15:198–210. doi: S1415-790X2012000100018 [pii]

    Article  Google Scholar 

  28. 28.

    World Health Organization. Global recommendations on physical activity for health. WHO: Geneva; 2010.

  29. 29.

    American Academy of Pediatrics. Children, adolescents, and the media. Pediatrics. 2013;132:958–61.

    Article  Google Scholar 

  30. 30.

    de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7. doi: S0042-96862007000900010 [pii]

    Article  Google Scholar 

  31. 31.

    Barufaldi LA, Abreu Gde A, Veiga GV, Sichieri R, Kuschnir MC, Cunha DB, et al. Software to record 24-hour food recall: application in the Study of Cardiovascular Risks in Adolescents. Rev Bras Epidemiol. 2016;19:464–8.

    Article  PubMed  Google Scholar 

  32. 32.

    Williams R. Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J. 2006;6:58–82.

    Article  Google Scholar 

  33. 33.

    Fullerton AS. A conceptual framework for ordered logistic regression models. Sociol Methods Res. 2009;38:306–47.

    Article  Google Scholar 

  34. 34.

    Valtuena J, Gracia-Marco L, Vicente-Rodriguez G, Gonzalez-Gross M, Huybrechts I, Rey-Lopez JP, et al. Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study. Osteoporos Int. 2012;23:2227–37.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Unger MD, Cuppari L, Titan SM, Magalhaes MC, Sassaki AL, dos Reis LM, et al. Vitamin D status in a sunny country: where has the sun gone? Clin Nutr. 2010;29:784–8.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Muhairi SJ, Mehairi AE, Khouri AA, Naqbi MM, Maskari FA, Al Kaabi J, et al. Vitamin D deficiency among healthy adolescents in Al Ain, United Arab Emirates. BMC Public Health. 2013;13:33

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kuhn T, Kaaks R, Teucher B, Hirche F, Dierkes J, Weikert C, et al. Dietary, lifestyle, and genetic determinants of vitamin D status: a cross-sectional analysis from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Eur J Nutr. 2014;53:731–41.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Absoud M, Cummins C, Lim MJ, Wassmer E, Shaw N. Prevalence and predictors of vitamin D insufficiency in children: a Great Britain population based study. PLoS ONE. 2011;6:e22179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wanner M, Richard A, Martin B, Linseisen J, Rohrmann S. Associations between objective and self-reported physical activity and vitamin D serum levels in the US population. Cancer Causes Control. 2015;26:881–91.

    Article  PubMed  Google Scholar 

  40. 40.

    Maimoun L, Sultan C. Effect of physical activity on calcium homeostasis and calciotropic hormones: a review. Calcif Tissue Int. 2009;85:277–86.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Salamoun MM, Kizirian AS, Tannous RI, Nabulsi MM, Choucair MK, Deeb ME, et al. Low calcium and vitamin D intake in healthy children and adolescents and their correlates. Eur J Clin Nutr. 2005;59:177–84.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Pearson N, Biddle SJ. Sedentary behavior and dietary intake in children, adolescents, and adults. A systematic review. Am J Prev Med. 2011;41:178–88.

    Article  PubMed  Google Scholar 

  43. 43.

    Greca JP, Silva DA, Loch MR. Physical activity and screen time in children and adolescents in a medium size town in the South of Brazil. Rev Paul Pediatr. 2016;34:316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Guerra PH, de Farias Junior JC, Florindo AA. Sedentary behavior in Brazilian children and adolescents: a systematic review. Rev Saude Publica. 2016;50:9

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lehtonen-Veromaa M, Mottonen T, Nuotio I, Irjala K, Viikari J. The effect of conventional vitamin D(2) supplementation on serum 25(OH)D concentration is weak among peripubertal Finnish girls: a 3-y prospective study. Eur J Clin Nutr. 2002;56:431–7.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Maeda SS, Saraiva GL, Hayashi LF, Cendoroglo MS, Ramos LR, Correa Mde P, et al. Seasonal variation in the serum 25-hydroxyvitamin D levels of young and elderly active and inactive adults in Sao Paulo, Brazil: The Sao PAulo Vitamin D Evaluation Study (SPADES). Dermatoendocrinol. 2013;5:211–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author Contributions

ACMS, FVC, KVB, MCCK, BDS, CLO, DTG, ESD, and KMBC supervised data collection. ACMS, FVC, KVB, BDS, and KMBC conducted the analysis and the interpretation of data. ACMS drafted the first version of the manuscript. All authors critically reviewed and approved the final version of the submitted manuscript.


The ERICA project was supported by FINEP (grant 01090421) and the Brazilian National Council for Technological and Scientific Development—CNPq (grants 565037/2010-2, 405009/2012-7, and 457050/2013-6). FVC is supported by CAPES. KVB and BDS were partially supported by CNPq.

Author information



Corresponding author

Correspondence to Felipe Vogt Cureau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.C.M., Cureau, F.V., de Oliveira, C.L. et al. Physical activity but not sedentary time is associated with vitamin D status in adolescents: study of cardiovascular risk in adolescents (ERICA). Eur J Clin Nutr 73, 432–440 (2019).

Download citation

Further reading


Quick links