Chocolate milk for recovery from exercise: a systematic review and meta-analysis of controlled clinical trials

Abstract

Background/objectives

Chocolate milk (CM) contains carbohydrates, proteins, and fat, as well as water and electrolytes, which may be ideal for post-exercise recovery. We systematically reviewed the evidence regarding the efficacy of CM compared to either water or other “sport drinks” on post-exercise recovery markers.

Subjects/methods

PubMed, Scopus, and Google scholar were explored up to April 2017 for controlled trials investigating the effect of CM on markers of recovery in trained athletes.

Results

Twelve studies were included in the systematic review (2, 9, and 1 with high, fair and low quality, respectively) and 11 had extractable data on at least one performance/recovery marker [7 on ratings of perceived exertion (RPE), 6 on time to exhaustion (TTE) and heart rate (HR), 4 on serum lactate, and serum creatine kinase (CK)]. The meta-analyses revealed that CM consumption had no effect on TTE, RPE, HR, serum lactate, and CK (P > 0.05) compared to placebo or other sport drinks. Subgroup analysis revealed that TTE significantly increases after consumption of CM compared to placebo [mean difference (MD) = 0.78 min, 95% confidence interval (CI): 0.27, 1.29, P = 0.003] and carbohydrate, protein, and fat-containing beverages (MD = 6.13 min, 95% CI: 0.11, 12.15, P = 0.046). Furthermore, a significant attenuation on serum lactate was observed when CM was compared with placebo (MD = −1.2 mmol/L, 95% CI: −2.06,−0.34, P = 0.006).

Conclusion

CM provides either similar or superior results when compared to placebo or other recovery drinks. Overall, the evidence is limited and high-quality clinical trials with more well-controlled methodology and larger sample sizes are warranted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Shirreffs SM, Watson P, Maughan RJ. Milk as an effective post-exercise rehydration drink. Br J Nutr. 2007;98:173–80.

    CAS  Article  Google Scholar 

  2. 2.

    Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ. Glycogen resynthesis in skeletal muscle following resistive exercise. Med Sci Sports Exerc. 1993;25:349–54.

    CAS  Article  Google Scholar 

  3. 3.

    el-Sayed MS, Rattu AJ, Roberts I. Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal exercise performance capacity. Int J Sport Nutr. 1995;5:215–24.

    CAS  Article  Google Scholar 

  4. 4.

    Temesi J, Johnson NA, Raymond J, Burdon CA, O’Connor HT. Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr. 2011;141:890–7. https://doi.org/10.3945/jn.110.137075.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Jeukendrup A, Brouns F, Wagenmakers AJ, Saris WH. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18:125–9. https://doi.org/10.1055/s-2007-972607.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Davison GW, McClean C, Brown J, Madigan S, Gamble D, Trinick T, et al. The effects of ingesting a carbohydrate-electrolyte beverage 15min prior to high-intensity exercise performance. Res Sports Med. 2008;16:155–66. https://doi.org/10.1080/15438620802103155.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Andersen G, Orngreen MC, Preisler N, Jeppesen TD, Krag TO, Hauerslev S, et al. Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise: a placebo-controlled crossover study. Am J Physiol Regul Integr Comp Physiol. 2015;308:R123–130. https://doi.org/10.1152/ajpregu.00321.2014.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106:1394–402. https://doi.org/10.1152/japplphysiol.90333.2008.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wong SH, Chen Y. Effect of a carbohydrate-electrolyte beverage, lemon tea, or water on rehydration during short-term recovery from exercise. Int J Sport Nutr Exerc Metab. 2011;21:300–10.

    Article  Google Scholar 

  10. 10.

    Saunders MJ, Kane MD, Todd MK. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sports Exerc. 2004;36:1233–8.

    CAS  Article  Google Scholar 

  11. 11.

    Saunders MJ, Luden ND, Herrick JE. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res. 2007;21:678–84.

    PubMed  Google Scholar 

  12. 12.

    Skillen RA, Testa M, Applegate EA, Heiden EA, Fascetti AJ, Casazza GA. Effects of an amino acid carbohydrate drink on exercise performance after consecutive-day exercise bouts. Int J Sport Nutr Exerc Metab. 2008;18:473–92.

    CAS  Article  Google Scholar 

  13. 13.

    Ivy JL, Goforth HW Jr., Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93:1337–44. https://doi.org/10.1152/japplphysiol.00394.2002.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38:1106–13. https://doi.org/10.1249/01.mss.0000222826.49358.f3.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Jentjens R, Jeukendrup AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33:117–44.

    Article  Google Scholar 

  16. 16.

    Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, et al. Flavanol-rich cocoa drink lowers plasma F 2-isoprostane concentrations in humans. Free Radic Biol Med. 2004;37:411–21.

    CAS  Article  Google Scholar 

  17. 17.

    Watson P, Love TD, Maughan RJ, Shirreffs SM. A comparison of the effects of milk and a carbohydrate-electrolyte drink on the restoration of fluid balance and exercise capacity in a hot, humid environment. Eur J Appl Physiol. 2008;104:633–42.

    Article  Google Scholar 

  18. 18.

    Macdougall JD, Ray S, Sale DG, Mccartney N, Lee P, Garner S. Muscle substrate utilization and lactate production during weightlifting. Can J Appl Physiol. 1999;24:209–15.

    CAS  Article  Google Scholar 

  19. 19.

    Josse AR, Atkinson SA, Tarnopolsky MA, Phillips SM. Increased consumption of dairy foods and protein during diet-and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr. 2011;141:1626–34.

    CAS  Article  Google Scholar 

  20. 20.

    Wilkinson SB, Tarnopolsky MA, MacDonald MJ, MacDonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85:1031–40.

    CAS  Article  Google Scholar 

  21. 21.

    Boirie Y, Dangin M, Gachon P, Vasson M-P, Maubois J-L, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci. 1997;94:14930–5.

    CAS  Article  Google Scholar 

  22. 22.

    Dangin M, Guillet C, Garcia‐Rodenas C, Gachon P, Bouteloup‐Demange C, Reiffers‐Magnani K, et al. The rate of protein digestion affects protein gain differently during aging in humans. J Physiol. 2003;549:635–44.

    CAS  Article  Google Scholar 

  23. 23.

    Salejda AM, Krasnowska G. Effect of dietary rapeseed oil and humus-containing mineral preparation on cholesterol and cholesterol oxidation products content in pork. Eur Food Res Technol. 2016; 242:1441–6. https://doi.org/10.1007/s00217-016-2644-x.

    CAS  Article  Google Scholar 

  24. 24.

    Lunn WR, Pasiakos SM, Colletto MR, Karfonta KE, Carbone JW, Anderson JM, et al. Chocolate milk and endurance exercise recovery: Protein balance, glycogen, and performance. Med Sci Sports Exerc. 2012;44:682–91. https://doi.org/10.1249/MSS.0b013e3182364162.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Karp JR, Johnston JD, Tecklenburg S, Mickleborough TD, Fly AD, Stager JM. Chocolate milk as a post-exercise recovery aid. Int J Sport Nutr Exerc Metab. 2006;16:78–91.

    Article  Google Scholar 

  26. 26.

    Ferguson-Stegall L, McCleave EL, Ding Z, Doerner PG 3rd, Wang B, Liao YH, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res. 2011;25:1210–24. https://doi.org/10.1519/JSC.0b013e318212db21.

    Article  PubMed  Google Scholar 

  27. 27.

    Gilson SF, Saunders MJ, Moran CW, Moore RW, Womack CJ, Todd MK. Effects of chocolate milk consumption on markers of muscle recovery following soccer traininfg: a randomized cross-over study. J Int Soc Sports Nutr. 2010;7:19. https://doi.org/10.1186/1550-2783-7-19.

    Article  Google Scholar 

  28. 28.

    Fraga CG, Actis-Goretta L, Ottaviani JI, Carrasquedo F, Lotito SB, Lazarus S, et al. Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol. 2005;12:11–17.

    CAS  Article  Google Scholar 

  29. 29.

    Spaccarotella KJ, Andzel WD. The effects of low fat chocolate milk on postexercise recovery in collegiate athletes. J Strength Cond Res. 2011;25:3456–60. https://doi.org/10.1519/JSC.0b013e3182163071.

    Article  PubMed  Google Scholar 

  30. 30.

    Pritchett KL, Pritchett RC, Green JM, Katica C, Combs B, Eldridge M, et al. Comparisons of post-exercise chocolate milk and a commercial recovery beverage following cycling training on recovery and performance. J Exerc Physiol Online. 2011;14:29–39.

    Google Scholar 

  31. 31.

    Thomas K, Morris P, Stevenson E. Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Appl Physiol, Nutr Metab. 2009;34:78–82. https://doi.org/10.1139/H08-137.

    CAS  Article  Google Scholar 

  32. 32.

    Pritchett K, Bishop P, Pritchett R, Green M, Katica C. Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Appl Physiol Nutr Metab. 2009;34:1017–22. https://doi.org/10.1139/H09-104.

    Article  PubMed  Google Scholar 

  33. 33.

    Azadbakht L, Fard NRP, Karimi M, Baghaei MH, Surkan PJ, Rahimi M, et al. Effects of the dietary approaches to stop hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care. 2011;34:55–57.

    CAS  Article  Google Scholar 

  34. 34.

    Papacosta E, Nassis GP, Gleeson M. Effects of acute postexercise chocolate milk consumption during intensive judo training on the recovery of salivary hormones, salivary SIgA, mood state, muscle soreness, and judo-related performance. Appl Physiol Nutr Metab. 2015;40:1116–22. https://doi.org/10.1139/apnm-2015-0243

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Potter J, Fuller B. The effectiveness of chocolate milk as a post-climbing recovery aid. J Sports Med Phys Fitness. 2015; 55:1438–44.

  36. 36.

    Upshaw AU, Wong TS, Bandegan A, Lemon PW. Cycling time trial performance 4h following glycogen-lowering exercise is enhanced similarly with recovery non-dairy chocolate beverages vs chocolate milk. Int J Sport Nutr Exerc Metab 2016;26:65–70. https://doi.org/10.1123/ijsnem.2015-0056.

    CAS  Article  Google Scholar 

  37. 37.

    Higgins JPT, Green S, Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell; 2008.

    Google Scholar 

  38. 38.

    Higgins J, Thompson SG. Quantifying heterogeneity in a meta‐analysis. Stat Med. 2002;21:1539–58.

    Article  Google Scholar 

  39. 39.

    Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  Article  Google Scholar 

  40. 40.

    Morato PN, Rodrigues JB, Moura CS, e Silva FGD, Esmerino EA, Cruz AG, et al. Omega-3 enriched chocolate milk: a functional drink to improve health during exhaustive exercise. J Funct Foods. 2015;14:676–83. https://doi.org/10.1016/j.jff.2015.02.034.

    CAS  Article  Google Scholar 

  41. 41.

    Abd El-Khair AA. Optimization of a new version of chocolate milk for endurance performance and post-exercise recovery. J Appl Sci Res. 2009;5:482–9.

    CAS  Google Scholar 

  42. 42.

    Ferguson-Stegall L, McCleave E, Ding Z, Doerner Iii PG, Liu Y, Wang B, et al. Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J Nutr Metab 2011; 2011:623182. https://doi.org/10.1155/2011/623182.

    Article  Google Scholar 

  43. 43.

    Mitchell CJ, Oikawa SY, Ogborn DI, Nates NJ, MacNeil LG, Tarnopolsky M, et al. Daily chocolate milk consumption does not enhance the effect of resistance training in young and old men: a randomized controlled trial. Appl Physiol Nutr Metab. 2015;40:199–202. https://doi.org/10.1139/apnm-2014-0329.

    Article  PubMed  Google Scholar 

  44. 44.

    Alberici JC, Farrell PA, Kris-Etherton PM, Shively CA. Effects of preexercise candy bar ingestion on glycemic response, substrate utilization, and performance. Int J Sport Nutr. 1993;3:323–33.

    CAS  Article  Google Scholar 

  45. 45.

    Pritchett K, Pritchett R. Chocolate milk: a post-exercise recovery beverage for endurance sports. Med Sport Sci. 2012; 59:127–34.

  46. 46.

    Saunders MJ. Carbohydrate-protein intake and recovery from endurance exercise: Is chocolate milk the answer? Curr Sports Med Rep. 2011;10:203–10. https://doi.org/10.1249/JSR.0b013e318223ccb4.

    Article  PubMed  Google Scholar 

  47. 47.

    Spaccarotella KJ, Andzel WD. Building a beverage for recovery from endurance activity: a review. J Strength Cond Res. 2011;25:3198–204. https://doi.org/10.1519/JSC.0b013e318212e52f.

    Article  PubMed  Google Scholar 

  48. 48.

    Volpe. Recovery beverages: A review of two recent studies. ACSM’s Health Fit J. 2007;11:33–34. https://doi.org/10.1249/01.FIT.0000288540.54363.e4.

    Article  Google Scholar 

  49. 49.

    Saunders MJ. Glycogen replenishment with chocolate milk consumption. Curr Sports Med Rep. 2011;10:390 https://doi.org/10.1249/JSR.0b013e318237c0ed.

    Article  PubMed  Google Scholar 

  50. 50.

    Bellar D, LeBlanc NR, Murphy K, Moody KM, Buquet G. The impact of chocolate goat’s and cow’s milk on postresistance exercise endocrine responses and isometric mid-thigh pull performance. J Diet Suppl. 2016;13:560–9. https://doi.org/10.3109/19390211.2015.1124164.

    CAS  Article  Google Scholar 

  51. 51.

    Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20:669–77. https://doi.org/10.1016/j.nut.2004.04.017.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Pritchett KL, Pritchett RC, Bishop P. Nutritional strategies for post-exercise recovery: a review. South Afr J Sports Med. 2011;23:20–25.

    Article  Google Scholar 

  53. 53.

    Valentine RJ, Saunders MJ, Todd MK, St. Laurent TG. Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int J Sport Nutr Exerc Metab. 2008;18:363–78.

    CAS  Article  Google Scholar 

  54. 54.

    Zawadzki KM, Yaspelkis BB 3rd, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72:1854–9. https://doi.org/10.1152/jappl.1992.72.5.1854.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71:140–50. https://doi.org/10.1111/j.1748-1716.1967.tb03720.x.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Davis JM, Bailey SP, Woods JA, Galiano FJ, Hamilton MT, Bartoli WP. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol. 1992;65:513–9.

    CAS  Article  Google Scholar 

  57. 57.

    Saunders MJ. Coingestion of carbohydrate-protein during endurance exercise: influence on performance and recovery. Int J Sport Nutr Exerc Metab. 2007;17:S87–S103.

    CAS  Article  Google Scholar 

  58. 58.

    Hickson R, Rennie M, Conlee R, Winder W, Holloszy J. Effects of increased plasma fatty acids on glycogen utilization and endurance. J Appl Physiol. 1977;43:829–33.

    CAS  Article  Google Scholar 

  59. 59.

    Brechtel K, Dahl DB, Machann J, Bachmann OP, Wenzel I, Maier T, et al. Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1H-MRS study. Magn Reson Med. 2001;45:179–83.

    CAS  Article  Google Scholar 

  60. 60.

    Bloomer RJ, Goldfarb AH. Can nutritional supplements reduce exercise-induced skeletal muscle damage? Strength Cond J. 2003;25:30–37.

    Article  Google Scholar 

  61. 61.

    Saunders MJ, Luden ND, Herrick JE. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res. 2007;21:678–84. https://doi.org/10.1519/r-20506.1.

    Article  PubMed  Google Scholar 

Download references

Funding

The present systematic review was supported by the Research Council of the Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Author contributions

AS-A and MA conceived the study. All authors contributed in defining the search strategy. MA and AS-A carried out the literature search and data extraction. MA and AS-A accomplished the quality assessment of the included studies and data analysis. MA, AS-A, and RG contributed in the interpretation of study results. MA wrote the first draft of the manuscript. MA, AS-A, MK, and SF facilitated with preparation of the manuscript, its finalization. All authors contributed to the study conception, design, and drafting of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amin Salehi-Abargouei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., Ghiasvand, R., Kaviani, M. et al. Chocolate milk for recovery from exercise: a systematic review and meta-analysis of controlled clinical trials. Eur J Clin Nutr 73, 835–849 (2019). https://doi.org/10.1038/s41430-018-0187-x

Download citation

Further reading