Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minerals, trace elements, Vit. D and bone health

Lactase persistence may explain the paradoxical findings of high vitamin D concentrations in Europeans living in areas of low UV-B irradiation

Abstract

Background/objectives

Vitamin D has a critical role in skeletal health and maintaining serum calcium levels. Calcium is needed for a variety of cellular and metabolic processes in the body. Large amounts of vitamin D can be produced in the skin when exposed to UV-B radiation. It is therefore a paradox that in Europe, Caucasians living in higher latitude countries, such as Scandinavia and Iceland, have higher serum vitamin D compared with those living in lower latitude. In a recent study of adult-type lactase persistence (LP), it was shown that Caucasian of European descent, who carried the C-13910T LP allele, had higher levels of total serum 25-hydroxyvitamin D compared with those who were lactase non-persistent. This was attributed to higher consumption of dairy. We postulated that the distribution of the LP C-13910T allele in Caucasian populations may explain the vitamin D concentration pattern seen in Europe.

Subjects/methods

Baseline mean total serum 25 hydroxyvitamin D concentration from a clinical trial of post-menopausal women with osteoporosis was correlated to published LP frequencies in European populations.

Results

In multiple regression analysis, mean total serum 25 hydroxyvitamin D concentrations in both winter and summer were in turn correlated to LP phenotype frequency (winter: r2 = 0.51, p < 0.05; summer: r2 = 0.4, p < 0.05).

Conclusions

High frequency of LP in northern Europe may explain high mean total serum 25 hydroxyvitamin D concentrations despite low UV-B radiation exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. Bone Rep. 2014;3:480.

    Google Scholar 

  2. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–76.

    Article  CAS  Google Scholar 

  3. Bendik I, Friedel A, Roos FF, Weber P, Eggersdorfer M. Vitamin D: a critical and essential micronutrient for human health. Front Physiol. 2014;5:248.

    Article  Google Scholar 

  4. Aune D, Navarro Rosenblatt DA, Chan DSM, Vieira AR, Vieira R, Greenwood DC, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101:87–117.

    Article  CAS  Google Scholar 

  5. Rosen CJ. Vitamin D insufficiency. N Engl J Med. 2011;364:248–54.

    Article  CAS  Google Scholar 

  6. Alharbi O, El-Sohemy A. Lactose intolerance (LCT-13910C>T) genotype is associated with plasma 25-hydroxyvitamin D concentrations in Caucasians: a Mendelian Randomization Study. J Nutr. 2017;147:1063–9.

    Article  CAS  Google Scholar 

  7. American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for prevention of falls and their consequences. J Am Geriatr Soc. 2014;62:147–52.

    Article  Google Scholar 

  8. Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, et al. The Nonskeletal effects of vitamin D: an endocrine society scientific statement. Endocr Rev. 2012;33:456–92.

    Article  CAS  Google Scholar 

  9. Shore RM, Chesney RW. Rickets: part I. Pediatr Radiol. 2013;43:140–51.

    Article  Google Scholar 

  10. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  Google Scholar 

  11. Vieth R, Bischoff-Ferrari H, Boucher BJ, Dawson-Hughes B, Garland CF, Heaney RP, et al. The urgent need to recommend an intake of vitamin D that is effective. Am J Clin Nutr. 2007;85:649–50.

    Article  CAS  Google Scholar 

  12. McKenna MJ. Differences in vitamin D status between countries in young adults and the elderly. Am J Med. 1992;93:69–77.

    Article  CAS  Google Scholar 

  13. Maalouf NM. The noncalciotropic actions of vitamin D: recent clinical developments. Curr Opin Nephrol Hypertens. 2008;17:408–15.

    Article  CAS  Google Scholar 

  14. Marwaha RK, Tandon N, Reddy DRHK, Aggarwal R, Singh R, Sawhney RC, et al. Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am J Clin Nutr. 2005;82:477–82.

    Article  CAS  Google Scholar 

  15. Harris SS, Soteriades E, Coolidge JAS, Mudgal S, Dawson-Hughes B. Vitamin D insufficiency and hyperparathyroidism in a low income, multiracial, elderly population 1. J Clin Endocrinol Metab. 2000;85:4125–30.

    CAS  PubMed  Google Scholar 

  16. Grant WB, Cross HS, Garland CF, Gorham ED, Moan J, Peterlik M, et al. Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Prog Biophys Mol Biol. 2009;99:104–13.

    Article  CAS  Google Scholar 

  17. Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr. 1998;68:854–8.

    Article  CAS  Google Scholar 

  18. Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol. 2017;13:466–79.

    Article  CAS  Google Scholar 

  19. Vieth R, Vitamin D toxicity, policy, and science. J Bone Miner Res. 2007;22:64–8.

    Article  Google Scholar 

  20. Göring H, Koshuchowa S. Vitamin D—the sun hormone. Life in environmental mismatch. Biochemistry. 2015;80:8–20.

    PubMed  Google Scholar 

  21. Göring H, Koshuchowa S. Vitamin D deficiency in Europeans today and in Viking settlers of Greenland. Biochemistry. 2016;81:1492–7.

    PubMed  Google Scholar 

  22. Holick MF, The vitamin D epidemic and its health consequences. J Nutr. 2005;135:2739–48.

    Article  Google Scholar 

  23. Biancuzzo RM, Clarke N, Reitz RE, Travison TG, Holick MF. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab. 2013;98:973–9.

    Article  CAS  Google Scholar 

  24. van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab. 2011;25:671–80.

    Article  Google Scholar 

  25. van Schoor N, Lips P. Global overview of vitamin D status. Endocrinol Metab Clin North Am. 2017;46:845–70.

    Article  Google Scholar 

  26. Hilger J, Friedel A, Herr R, Rausch T, Roos F, Wahl DA, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014;111:23–45.

    Article  CAS  Google Scholar 

  27. Spiro A, Buttriss JL. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bull. 2014;39:322–50.

    Article  CAS  Google Scholar 

  28. Andersen R, Mølgaard C, Skovgaard LT, Brot C, Cashman KD, Chabros E, et al. Teenage girls and elderly women living in northern Europe have low winter vitamin D status. Eur J Clin Nutr. 2005;59:533–41.

    Article  CAS  Google Scholar 

  29. Helgi Library. Fish Consumption Per Capita in Norway|Helgi Library. 2017. http://www.helgilibrary.com/indicators/fish-consumption-per-capita/norway/ Accessed 14 December 2017.

  30. Bergholdt HKM, Nordestgaard BG, Varbo A, Ellervik C. Lactase persistence, milk intake, and mortality in the Danish general population: a Mendelian randomization study. Eur J Epidemiol. 2018;2:171–81.

    Article  Google Scholar 

  31. Ding M, Huang T, Bergholdt HK, Nordestgaard BG, Ellervik C, Qi L. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study. BMJ. 2017;356:j1000.

  32. Kuchuk NO, van Schoor NM, Pluijm SM, Chines A, Lips P. Vitamin D status, parathyroid function, bone turnover, and BMD in postmenopausal women with osteoporosis: global perspective. J Bone Miner Res. 2009;24:693–701.

    Article  CAS  Google Scholar 

  33. Liebert A, López S, Jones BL, Montalva N, Gerbault P, Lau W, et al. World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection. Hum Genet. 2017;136:1445–53.

    Article  CAS  Google Scholar 

  34. Szilagyi A, Leighton H, Burstein B, Xue X. Latitude, sunshine, and human lactase phenotype distributions may contribute to geographic patterns of modern disease: the inflammatory bowel disease model. Clin Epidemiol. 2014;6:183–98.

    Article  Google Scholar 

  35. National Accounts of OECD Countries. OECD data, Volume 2017 Issue 2. 2017. https://data.oecd.org/gdp/gross-domestic-product-gdp.htm Accessed 14 December 2017.

  36. Ségurel L, Bon C. On the evolution of lactase persistence in humans. Annu Rev Genom Hum Genet. 2017;18:297–319.

    Article  Google Scholar 

  37. Silanikove N, Leitner G, Merin U. The interrelationships between lactose intolerance and the modern dairy industry: global perspectives in evolutional and historical backgrounds. Nutrients. 2015;7:7312–31.

    Article  CAS  Google Scholar 

  38. Enattah NS, Jensen TGK, Nielsen M, Lewinski R, Kuokkanen M, Rasinpera H, et al. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am J Hum Genet. 2008;82:57–72.

    Article  CAS  Google Scholar 

  39. Gerbault P, Liebert A, Itan Y, Powell A, Currat M, Burger J, et al. Evolution of lactase persistence: an example of human niche construction. Philos Trans R Soc Lond B Biol Sci. 2011;366:863–77.

    Article  CAS  Google Scholar 

  40. Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol Biol. 2010;10:36.

    Article  Google Scholar 

  41. Ingram CJE, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet. 2009;124:579–91.

    Article  CAS  Google Scholar 

  42. Gallego Romero I, Basu Mallick C, Liebert A, Crivellaro F, Chaubey G, Itan Y, et al. Herders of Indian and European cattle share their predominant allele for lactase persistence. Mol Biol Evol. 2012;29:249–60.

    Article  CAS  Google Scholar 

  43. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39:31–40.

    Article  CAS  Google Scholar 

  44. Shrier I, Szilagyi A, Correa JA. Impact of lactose containing foods and the genetics of lactase on diseases: an analytical review of population data. Nutr Cancer. 2008;60:292–300.

    Article  Google Scholar 

  45. Gerbault P, Moret C, Currat M, Sanchez-Mazas A. Impact of selection and demography on the diffusion of lactase persistence. PLoS One. 2009;4:e6369.

    Article  Google Scholar 

  46. Ranciaro A, Campbell MC, Hirbo JB, Ko W-Y, Froment A, Anagnostou P, et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet. 2014;94:496–510.

    Article  CAS  Google Scholar 

  47. Heyer E, Brazier L, Ségurel L, Hegay T, Austerlitz F, Quintana-Murci L, et al. Lactase persistence in Central Asia: phenotype, genotype, and evolution. Hum Biol. 2011;83:379–92.

    Article  Google Scholar 

  48. Wang YG, Yan YS, Xu JJ, Du RF, Flatz SD, Kühnau W, et al. Prevalence of primary adult lactose malabsorption in three populations of northern China. Hum Genet. 1984;67:103–6.

    Article  CAS  Google Scholar 

  49. Enattah NS, Trudeau A, Pimenoff V, Maiuri L, Auricchio S, Greco L, et al. Evidence of still-ongoing convergence evolution of the lactase persistence T-13910 alleles in humans. Am J Hum Genet. 2007;81:615–25.

    Article  CAS  Google Scholar 

  50. Shaukat A, Levitt MD, Taylor BC, MacDonald R, Shamliyan TA, Kane RL, et al. Systematic review: effective management strategies for lactose intolerance. Ann Intern Med. 2010;152:797.

    Article  Google Scholar 

  51. Sibley E. Genetic variation and lactose intolerance: detection methods and clinical implications. Am J Pharm. 2004;4:239–45.

    CAS  Google Scholar 

  52. Zhong Y, Priebe MG, Vonk RJ, Huang C-Y, Antoine J-M, He T, et al. The role of colonic microbiota in lactose intolerance. Dig Dis Sci. 2004;49:78–83.

    Article  CAS  Google Scholar 

  53. Deng Y, Misselwitz B, Dai N, Fox M. Lactose intolerance in adults: biological mechanism and dietary management. Nutrients. 2015;7:8020–35.

    Article  CAS  Google Scholar 

  54. He T, Priebe MG, Harmsen HJM, Stellaard F, Sun X, Welling GW, et al. Colonic fermentation may play a role in lactose intolerance in humans. J Nutr. 2006;136:58–63.

    Article  CAS  Google Scholar 

  55. Szilagyi A. Adaptation to lactose in lactase non persistent people: effects on intolerance and the relationship between dairy food consumption and evalution of diseases. Nutrients. 2015;7:6751–79.

    Article  CAS  Google Scholar 

  56. Flatz G, Rotthauwe HW. Lactose nutrition and natural selection. Lancet. 1973;2:76–7.

    Article  CAS  Google Scholar 

  57. Luca F, Perry GH, Di Rienzo A. Evolutionary adaptations to dietary changes. Annu Rev Nutr. 2010;30:291–314.

    Article  CAS  Google Scholar 

  58. Muehlhoff E, Bennett A, Mcmahon D. Milk and Dairy Products in Human Nutrition. Rome: Food and Agriculture Organization of the United Nations; 2013. http://www.fao.org/docrep/018/i3396e/i3396e.pdf Accessed 9 March 2018.

    Google Scholar 

  59. Raw Milk. What’s In It? http://www.raw-milk-facts.com/what_is_in_raw_milk.html Accessed 9 March 2018.

  60. Berridge MJ. Calcium signalling remodelling and disease. Biochem Soc Trans. 2012;40:297–309.

    Article  CAS  Google Scholar 

  61. Norman AW. Sunlight, season, skin pigmentation, vitamin D, and 25-hydroxyvitamin D: integral components of the vitamin D endocrine system. Am J Clin Nutr. 1998;67:1108–10.

    Article  CAS  Google Scholar 

  62. Miller PD, Chines AA, Christiansen C, Hoeck HC, Kendler DL, Lewiecki EM, et al. Effects of bazedoxifene on BMD and bone turnover in postmenopausal women: 2-yr results of a randomized, double-blind, placebo-, and active-controlled study. J Bone Miner Res. 2007;23:525–35.

    Article  Google Scholar 

  63. Li S-S, Gao L-H, Zhang X-Y, He J-W, Fu W-Z, Liu Y-J, et al. Genetically low vitamin D levels, bone mineral density, and bone metabolism markers: a Mendelian Randomisation Study. Sci Rep. 2016;6:33202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nils Reinton for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Moghaddam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorthe, J., Moghaddam, A. Lactase persistence may explain the paradoxical findings of high vitamin D concentrations in Europeans living in areas of low UV-B irradiation. Eur J Clin Nutr 73, 585–593 (2019). https://doi.org/10.1038/s41430-018-0179-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0179-x

Search

Quick links