Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal and pediatric nutrition

Early first trimester maternal ‘high fish and olive oil and low meat’ dietary pattern is associated with accelerated human embryonic development

Abstract

Background/objectives

Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome.

Subjects/methods

A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6+0 and 10+2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models.

Results

A total of 726 3D US scans were included (median: three scans per pregnancy). The ‘high fish and olive oil and low meat’ dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The ‘high vegetables, fruit and grain’ dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake.

Conclusions

Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fleming TP, Watkins AJ, Sun C, Velazquez MA, Smyth NR, Eckert JJ. Do little embryos make big decisions? How maternal dietary protein restriction can permanently change an embryo’s potential, affecting adult health. Reprod Fertil Dev. 2015;27:684–92.

    Article  CAS  PubMed  Google Scholar 

  2. Williams L, Seki Y, Vuguin PM, Charron MJ. Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta. 2014;1842:507–19.

    Article  CAS  PubMed  Google Scholar 

  3. Sinclair KD, Watkins AJ. Parental diet, pregnancy outcomes and offspring health: metabolic determinants in developing oocytes and embryos. Reprod Fertil Dev. 2013;26:99–114.

    Article  CAS  PubMed  Google Scholar 

  4. Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair K. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update. 2013;19:640–55.

    Article  CAS  PubMed  Google Scholar 

  5. Bouwland-Both MI, Steegers-Theunissen RP, Vujkovic M, Lesaffre EM, Mook-Kanamori DO, Hofman A, et al. A periconceptional energy-rich dietary pattern is associated with early fetal growth: the Generation R study. BJOG. 2013;120:435–45.

    Article  CAS  PubMed  Google Scholar 

  6. van Uitert EM, van Ginkel S, Willemsen SP, Lindemans J, Koning AH, Eilers PH, et al. An optimal periconception maternal folate status for embryonic size: the Rotterdam Predict study. BJOG. 2014;121:821–9.

    Article  CAS  PubMed  Google Scholar 

  7. O’Rahilly R. Human embryo. Nature. 1987;329:385.

    Article  PubMed  Google Scholar 

  8. O’Rahilly R, Müller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010;192:73–84.

    Article  PubMed  Google Scholar 

  9. Blaas HG. The examination of the embryo and early fetus: how and by whom? Ultrasound Obstet Gynecol. 1999;14:153–8.

    Article  CAS  PubMed  Google Scholar 

  10. Blaas HG, Eik-Nes SH, Berg S, Torp H. In-vivo three-dimensional ultrasound reconstructions of embryos and early fetuses. Lancet. 1998;352:1182–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rousian M, Koning AH, van Oppenraaij RH, Hop WC, Verwoerd-Dikkeboom CM, van der Spek PJ, et al. An innovative virtual reality technique for automated human embryonic volume measurements. Hum Reprod. 2010;25:2210–6.

    Article  CAS  PubMed  Google Scholar 

  12. Verwoerd-Dikkeboom CM, Koning AH, Hop WC, Rousian M, Van Der Spek PJ, Exalto N, et al. Reliability of three-dimensional sonographic measurements in early pregnancy using virtual reality. Ultrasound Obstet Gynecol. 2008;32:910–6.

    Article  CAS  PubMed  Google Scholar 

  13. Verwoerd-Dikkeboom CM, Koning AH, van der Spek PJ, Exalto N, Steegers EA. Embryonic staging using a 3D virtual reality system. Hum Reprod. 2008;23:1479–84.

    Article  CAS  PubMed  Google Scholar 

  14. Steegers-Theunissen RP, Verheijden-Paulissen JJ, van Uitert EM, Wildhagen MF, Exalto N, Koning AH, et al. Cohort profile: the rotterdam periconceptional cohort (predict study). Int J Epidemiol. 2016;45:374–81.

    Article  PubMed  Google Scholar 

  15. Robinson HP. Sonar measurement of fetal crown rump length as means of assessing maturity in first trimester of pregnancy. Br Med J. 1973;4:28–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siebelink E, Geelen A, de Vries JH. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br J Nutr. 2011;106:274–81.

    Article  CAS  PubMed  Google Scholar 

  17. Verkleij-Hagoort AC, de Vries JH, Stegers MP, Lindemans J, Ursem NT, Steegers-Theunissen RP. Validation of the assessment of folate and vitamin B12 intake in women of reproductive age: the method of triads. Eur J Clin Nutr. 2007;61:610–5.

    Article  CAS  PubMed  Google Scholar 

  18. Netherlands Nutrition Centre. NEVO-tabel; Nederlands Voedingsstoffenbestand 2011, RIVM/Voedingscentrum, Den Haag. 2011, https://www.rivm.nl/en/Topics/D/Dutch_Food_Composition_Database/Publications.

  19. Marjonen H, Sierra A, Nyman A, Rogojin V, Gröhn O, Linden AM, et al. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLoS One. 2015;10:e0124931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Uitert EM, van der Elst-Otte N, Wilbers JJ, Exalto N, Willemsen SP, Eilers PH, et al. Periconception maternal characteristics and embryonic growth trajectories: the Rotterdam Predict Study. Hum Reprod. 2013;28:3188–96.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann K, Schulze MB, Achienkiewitz A, Nothlings U, Boeing H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol. 2004;159:935–44.

    Article  PubMed  Google Scholar 

  22. Vujkovic M, Ocke MC, van der Spek PJ, Yazdanpanah N, Steegers EA, Steegers-Theunissen RP. Maternal western dietary patterns and the risk of developing a cleft lip with or without a cleft palate. Obstet Gynecol. 2007;110:378–84.

    Article  PubMed  Google Scholar 

  23. Rousian M, Koning AH, van der Spek PJ, Steegers EA, Exalto N. Virtual reality for embryonic measurements requiring depth perception. Fertil Steril. 2011;95:773–4.

    Article  PubMed  Google Scholar 

  24. Ramirez-Zea M. Validation of three predictive equations for basal metabolic rate in adults. Public Health Nutr. 2005;8:1213–28.

    Article  PubMed  Google Scholar 

  25. Parisi F, Rousian M, Huijgen NA, Koning AH, Willemsen SP, de Vries JH, et al. Periconceptional maternal ‘high fish and olive oil, low meat’ dietary pattern is associated with increased embryonic growth: The Rotterdam Periconceptional Cohort (Predict Study). Ultrasound Obstet Gynecol. 2017;50:709–16.

    Article  CAS  PubMed  Google Scholar 

  26. Rogers I, Emmett P, Ness A, Golding J. Maternal fish intake in late pregnancy and the frequency of low birth weight and intrauterine growth retardation in a cohort of British infants. J Epidemiol Community Health. 2004;58:486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thorsdottir I, Birgisdottir BE, Halldorsdottir S, Geirsson RT. Association of fish and fish liver oil intake in pregnancy with infant size at birth among women of normal weight before pregnancy in a fishing community. Am J Epidemiol. 2004;160:460–5.

    Article  PubMed  Google Scholar 

  28. Stratakis N, Roumeliotaki T, Oken E, Barros H, Basterrechea M, Charles MA, et al. Fish intake in pregnancy and child growth: a pooled analysis of 15 European and US birth cohorts. JAMA Pediatr. 2016;170:381–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Braga DP, Halpern G, Setti AS, Figueira RC, Iaconelli A Jr, Borges E Jr.. The impact of food intake and social habits on embryo quality and the likelihood of blastocyst formation. Reprod Biomed Online. 2015;31:30–38.

    Article  PubMed  Google Scholar 

  30. Hammiche F, Vujkovic M, Wijburg W, de Vries JH, Macklon NS, Laven JS, et al. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil Steril. 2011;95:1820–3.

    Article  CAS  PubMed  Google Scholar 

  31. Obermann-Borst SA, Vujkovic M, de Vries JH, Wildhagen MF, Looman CW, de Jonge R, et al. A maternal dietary pattern characterised by fish and seafood in association with the risk of congenital heart defects in the offspring. BJOG. 2011;118:1205–15.

    Article  CAS  PubMed  Google Scholar 

  32. Ramaiyan B, Bettadahalli S, Talahalli RR. Dietary omega-3 but not omega-6 fatty acids down-regulate maternal dyslipidemia induced oxidative stress: A three generation study in rats. Biochem Biophys Res Commun. 2016;477:887–94.

    Article  CAS  PubMed  Google Scholar 

  33. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24:31–41.

    Article  CAS  PubMed  Google Scholar 

  34. Waters SM, Coyne GS, Kenny DA, MacHugh DE, Morris DG. Dietary n-3 polyunsaturated fatty acid supplementation alters the expression of genes involved in the control of fertility in the bovine uterine endometrium. Physiol Genom. 2012;44:878–88.

    Article  CAS  Google Scholar 

  35. Sidhu KS. Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharmacol. 2003;38:336–44.

    Article  CAS  PubMed  Google Scholar 

  36. Higa R, Roberti SL, Musikant D, Mazzucco MB, White V, Jawerbaum A. Effects of maternal dietary olive oil on pathways involved in diabetic embryopathy. Reprod Toxicol. 2014;49:185–95.

    Article  CAS  PubMed  Google Scholar 

  37. Xia W, Chiu YH, Williams PL, Gaskins AJ, Toth TL, Tanrikut C, et al. Men’s meat intake and treatment outcomes among couples undergoing assisted reproduction. Fertil Steril. 2015;104:972–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Knudsen VK, Orozova-Bekkevold IM, Mikkelsen TB, Wolff S, Olsen SF. Major dietary patterns in pregnancy and fetal growth. Eur J Clin Nutr. 2008;62:463–70.

    Article  CAS  PubMed  Google Scholar 

  39. Larqué E, Zamora S, Gil A. Dietary trans fatty acids in early life: a review. Early Hum Dev. 2001;65(Suppl):S31–S41.

    Article  PubMed  Google Scholar 

  40. Zhu J, Li M, Chen L, Liu P, Qiao J. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5. Hum Reprod. 2014;29:1387–92.

    Article  CAS  PubMed  Google Scholar 

  41. Mantikou E, Youssef MA, van Wely M, van der Veen F, Al-Inany HG, Repping S, et al. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update. 2013;19:210–20.

    Article  CAS  PubMed  Google Scholar 

  42. Holst S, Kjær SK, Jørgensen ME, Damm P, Jensen A. Fertility problems and risk of gestational diabetes mellitus: a nationwide cohort study. Fertil Steril. 2016;106:427. e1

    Article  PubMed  Google Scholar 

  43. Jacques M, Freour T, Barriere P, Ploteau S. Adverse pregnancy and neo-natal outcomes after assisted reproductive treatment in patients with pelvic endometriosis: a case-control study. Reprod Biomed Online. 2016;32:626–34.

    Article  PubMed  Google Scholar 

  44. Bottomley C, Daemen A, Mukri F, Papageorghiou AT, Kirk E, Pexsters A, et al. Assessing first trimester growth: the influence of ethnic background and maternal age. Hum Reprod. 2009;24:284–90.

    Article  PubMed  Google Scholar 

  45. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303:527–34.

    Article  CAS  PubMed  Google Scholar 

  46. Jaddoe VW, de Jonge LL, Hofman A, Franco OH, Steegers EA, Gaillard R. First trimester growth restriction and cardiovascular risk factors in childhood. BMJ. 2014;348:g14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vujkovic M, Steegers EA, Looman CW, Ocké MC, van der Spek PJ, Steegers-Theunissen RP. The maternal Mediterranean dietary pattern is associated with a reduced risk of spina bifida in the offspring. BJOG. 2009;116:408–15.

    Article  CAS  PubMed  Google Scholar 

  48. Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res. 2004;56:311–7.

    Article  Google Scholar 

  49. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25:2–6.

    Article  CAS  PubMed  Google Scholar 

  50. Steegers-Theunissen RP, Steegers EA. Embryonic health: new insights, mHealth and personalised patient care. Reprod Fertil Dev. 2015;27:712–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Rotterdam periconception cohort team for contributions to recruitment, data collection, and cleaning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régine P. M. Steegers-Theunissen.

Ethics declarations

Conflict of interest

No conflicts of interests are declared. RST is CSO of the startup company Slimmere Zorg and CEO of eHealth Care Solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisi, F., Rousian, M., Steegers-Theunissen, R.P.M. et al. Early first trimester maternal ‘high fish and olive oil and low meat’ dietary pattern is associated with accelerated human embryonic development. Eur J Clin Nutr 72, 1655–1662 (2018). https://doi.org/10.1038/s41430-018-0161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0161-7

This article is cited by

Search

Quick links