Body composition and cardiometabolic health: the need for novel concepts


It seems reasonable that overweight and obesity should be defined based on body composition rather than indirect indices like BMI or waist circumference. The use of conventional parameters like fat mass or visceral fat is however of similar and limited value for disease risk prediction at the population level and does not contribute much beyond the use of simple BMI or waist circumference. This conundrum may be partly explained by using complex phenotypes (e.g., Metabolic Syndrome or whole body insulin resistance) rather than more disease-specific outcomes like liver- and muscle insulin resistance. In addition, there are multifactorial causes of similar body composition phenotypes that may add to explain the variance in metabolic consequences of these phenotypes. An intriguing hypothesis is that fat mass represents the metabolic load that interacts with fat-free mass that stands for metabolic capacity to determine disease risk. This concept has important implications for assessment of healthy growth and development and when it is challenged with weight gain in adults. Integration of body composition information at the whole body, organ-tissue and cellular level is not required to improve the diagnosis of obesity but facilitates a better understanding of the etiology of obesity-associated metabolic complications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Pollack A. AMA recognizes obesity as a disease. In: New York Times, 2013.

  2. 2.

    Obesity WHO. World Health Organization Obesity: preventing and managing the global epidemic. Pi-Sunyer XReport of a WHO Consultation. WHO Technical Report Series 894. In 2000.

  3. 3.

    Müller MJ, Braun W, Enderle J, Bosy-Westphal A. Beyond BMI: conceptual issues related to overweight and obese patients. Obes Facts. 2016;9:193–205.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Heitmann BL, Erikson H, Ellsinger BM, Mikkelsen KL, Larsson B. Mortality associated with body fat, fat-free mass and body mass index among 60-year-old swedish men-a 22-year follow-up. The study of men born in 1913. Int J Obes Relat Metab Disord. 2000;24:33–7.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Shen W, Punyanitya M, Chen J, Gallagher D, Albu J, Pi-Sunyer X, et al. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. Obesity. 2006;14:727–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bosy-Westphal A, Geisler C, Onur S, Korth O, Selberg O, Schrezenmeir J, et al. Value of body fat mass vs anthropometric obesity indices in the assessment of metabolic risk factors. Int J Obes. 2006;30:475–83.

    CAS  Article  Google Scholar 

  7. 7.

    Krachler B, Volgyi E, Savonen K, Tylavsky FA, Alen M, Cheng S. BMI and an anthropometry-based estimate of fat mass percentage are both valid discriminators of cardiometabolic risk: a comparison with DXA and bioimpedance. J Obes. 2013;2013:862514

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Liu P, Ma F, Lou H, Liu Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health. 2013;13:629

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bohn B, Müller MJ, Simic-Schleicher G, Kiess W, Siegfried W, Oelert M, et al. BMI or BIA: Is body mass index or body fat mass a better predictor of cardiovascular risk in overweight or obese children and adolescents? Obes Facts. 2015;8:156–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–8.

    Article  PubMed  Google Scholar 

  11. 11.

    Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Asp Med. 2013;34:1–11.

    CAS  Article  Google Scholar 

  12. 12.

    Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233:104–12.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Reaven G. All obese individuals are not created equal: insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diabetes Vasc Dis Res. 2005;2:105–12.

    Article  Google Scholar 

  14. 14.

    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.

    Article  PubMed  Google Scholar 

  15. 15.

    Geisler C, Braun W, Pourhassan M, Schweitzer L, Gluer CC, Bosy-Westphal A, et al. Gender-specific associations in age-related changes in resting energy expenditure (REE) and MRI measured body composition in healthy Caucasians. J Gerontol A Biol Sci Med Sci. 2016;71:941–6.

    Article  PubMed  Google Scholar 

  16. 16.

    Schweitzer L, Geisler C, Pourhassan M, Braun W, Gluer CC, Bosy-Westphal A, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015;102:58–65.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hunter GR, Gower BA, Kane BL. Age related shift in visceral fat. Int J Body Compos Res. 2010;8:103–8.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 388:776–86.

  19. 19.

    Jakobsen MU, Berentzen T, Sorensen TI, Overvad K. Abdominal obesity and fatty liver. Epidemiol Rev. 2007;29:77–87.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009;106:15430–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, et al. Hepatic diacylglycerol-associated protein kinase cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 2017;19:1997–2004.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126:12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Boyko EJ, Fujimoto WY, Leonetti DL, Newell-Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care. 2000;23:465–71.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Hyun YJ, Kim OY, Jang Y, Ha J-W, Chae JS, Kim JY, et al. Evaluation of metabolic syndrome risk in korean premenopausal women: not waist circumference but visceral fat. Circ J. 2008;72:1308–15.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Seo JA, Kim BG, Cho H, Kim HS, Park J, Baik SH, et al. The cutoff values of visceral fat area and waist circumference for identifying subjects at risk for metabolic syndrome in elderly Korean: Ansan Geriatric (AGE) cohort study. BMC Public Health. 2009;9:443.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wander PL, Boyko EJ, Leonetti DL, McNeely MJ, Kahn SE, Fujimoto WY. Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care. 2013;36:289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Faria G, Goncalves A, Cunha R, Guimaraes JT, Calhau C, Preto J, et al. Beyond central adiposity: liver fat and visceral fat area are associated with metabolic syndrome in morbidly obese patients. Int J Surg. 2015;14:75–9.

  29. 29.

    Oh YH, Moon JH, Kim HJ, Kong MH. Visceral-to-subcutaneous fat ratio as a predictor of the multiple metabolic risk factors for subjects with normal waist circumference in Korea. Diabetes Metab Syndr Obes. 2017;10:505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51:2005–11.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115:3587–93.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Investig. 1996;97:2859–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277:50230–6.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest. 2002;32:35–45.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Le Stunff C, Bougneres P. Early changes in postprandial insulin secretion, not in insulin sensitivity, characterize juvenile obesity. Diabetes. 1994;43:696–702.

    Article  PubMed  Google Scholar 

  37. 37.

    Livesey G, Taylor R, Livesey H, Liu S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;97:584–96.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. 1994;37:1025–35.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Brons C, Jensen CB, Storgaard H, Hiscock NJ, White A, Appel JS, et al. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol. 2009;587:2387–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29:1130–9.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Ter Horst KW, Gilijamse PW, Ackermans MT, Soeters MR, Nieuwdorp M, Romijn JA, et al. Impaired insulin action in the liver, but not in adipose tissue or muscle, is a distinct metabolic feature of impaired fasting glucose in obese humans. Metabolism. 2016;65:757–63.

    Article  PubMed  Google Scholar 

  43. 43.

    Kim D, Kim WR. Nonobese fatty liver disease. Clin Gastroenterol Hepatol. 2017;15:474–85.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Borel AL, Nazare JA, Smith J, Aschner P, Barter P, Van Gaal L, et al. Visceral, subcutaneous abdominal adiposity and liver fat content distribution in normal glucose tolerance, impaired fasting glucose and/or impaired glucose tolerance. Int J Obes. 2015;39:495–501.

    CAS  Article  Google Scholar 

  45. 45.

    Elisha B, Disse E, Chabot K, Taleb N, Prud’homme D, Bernard S, et al. Relative contribution of muscle and liver insulin resistance to dysglycemia in postmenopausal overweight and obese women: a MONET group study. Ann d’endocrinologie. 2017;78:1–8.

    Article  Google Scholar 

  46. 46.

    Kusters YH, Schalkwijk CG, Houben AJ, Kooi ME, Lindeboom L, Op ‘t Roodt J, et al. Independent tissue contributors to obesity-associated insulin resistance. JCI Insight. 2017;2.

  47. 47.

    Casey BA, Kohrt WM, Schwartz RS, Van Pelt RE. Subcutaneous adipose tissue insulin resistance is associated with visceral adiposity in postmenopausal women. Obesity. 2014;22:1458–63.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Koutsari C, Jensen MD. Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity. J Lipid Res. 2006;47:1643–50.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Johnson JA, Fried SK, Pi-Sunyer FX, Albu JB. Impaired insulin action in subcutaneous adipocytes from women with visceral obesity. Am J Physiol Endocrinol Metab. 2001;280:E40–9.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Fried SK, Tittelbach T, Blumenthal J, Sreenivasan U, Robey L, Yi J, et al. Resistance to the antilipolytic effect of insulin in adipocytes of African-American compared to Caucasian postmenopausal women. J Lipid Res. 2010;51:1193–200.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139:448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350:2549–57.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S. Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity. 2010;18:1510–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wells JCK. Body composition and susceptibility to type 2 diabetes: an evolutionary perspective. Eur J Clin Nutr. 2017;71:881–9.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Wells J. Historical cohort studies and the early origins of disease hypothesis: making sense of the evidence. Proc Nutr Soc. 2009;68:179–88.

    Article  PubMed  Google Scholar 

  56. 56.

    Wells JC, Victora CG. Indices of whole-body and central adiposity for evaluating the metabolic load of obesity. Int J Obes. 2005;29:483–9.

    CAS  Article  Google Scholar 

  57. 57.

    Loncar G, Bozic B, von Haehling S, Dungen HD, Prodanovic N, Lainscak M, et al. Association of adiponectin with peripheral muscle status in elderly patients with heart failure. Eur J Intern Med. 2013;24:818–23.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Kohara K, Ochi M, Okada Y, Yamashita T, Ohara M, Kato T, et al. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage. Atherosclerosis. 2014;235:424–9.

  59. 59.

    Lubkowska A, Radecka A, Bryczkowska I, Rotter I, Laszczynska M, Dudzinska W. Serum adiponectin and leptin concentrations in relation to body fat distribution, hematological indices and lipid profile in humans. Int J Environ Res Public Health. 2015;12:11528–48.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Bucci L, Yani SL, Fabbri C, Bijlsma AY, Maier AB, Meskers CG, et al. Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects. Biogerontology. 2013;14:261–72.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Huang C, Niu K, Momma H, Kobayashi Y, Guan L, Nagatomi R. Inverse association between circulating adiponectin levels and skeletal muscle strength in Japanese men and women. Nutr Metab Cardiovasc Dis. 2014;24:42–9.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Pisto P, Santaniemi M, Turpeinen JP, Ukkola O, Kesaniemi YA. Adiponectin concentration in plasma is associated with muscle fiber size in healthy middle-aged men. Scand J Clin Lab Invest. 2012;72:395–402.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    McEntegart MB, Awede B, Petrie MC, Sattar N, Dunn FG, MacFarlane NG, et al. Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur Heart J. 2007;28:829–35.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Woodward L, Akoumianakis I, Antoniades C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br J Pharmacol. 2017;174:4007–20.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anja Bosy-Westphal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bosy-Westphal, A., Braun, W., Geisler, C. et al. Body composition and cardiometabolic health: the need for novel concepts. Eur J Clin Nutr 72, 638–644 (2018).

Download citation

Further reading