Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in assessing body composition during pregnancy

Abstract

The prevalence of excess gestational weight gain is increasing worldwide and is associated with pregnancy complications, including gestational diabetes mellitus, pre-eclampsia, preterm birth, macrosomia, and development of obesity in offspring. Whereas gestational weight gain positively correlates with the gain in fat mass (FM), fat-free mass (FFM) gain is relatively consistent across pregnancies. Commonly used methods to assess body composition include anthropometry, densitometry (air displacement plethysmography, underwater weighing), and hydrometry (isotope dilution, bioimpedance analysis). While these techniques can be applied to pregnancy, they require specific adjustments to assumptions inherent within each method, most importantly to accommodate for the hydration of FFM which is transient throughout gestation. Here we discuss the application of the abovementioned methods to pregnant women and the relevant adjustments needed to more accurately calculate FM based on body weight, body volume, or total body water. We also present a novel application of classical data to provide FFM density estimates for pregnant women at any stage of pregnancy. Use of these adjustments will help standardize assumptions on FFM hydration and minimize error in FM estimation. Techniques still fail, however, to fully distinguish tissue gains between mother and fetus. To fill this important gap, imaging techniques such as ultrasound and magnetic resonance imaging are being used more frequently and will provide more insight into fetal development, fetal adiposity, and depot specificity of maternal FM acquisition. Efforts to synchronize protocols are necessary to allow seamless comparison of data to advance the understanding of maternal body composition changes that contribute to pregnancy-related complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bodnar LM, Siminerio LL, Himes KP, Hutcheon JA, Lash TL, Parisi SM, et al. Maternal obesity and gestational weight gain are risk factors for infant death. Obesity (Silver Spring). 2016;24:490–8.

    Article  Google Scholar 

  2. Oken E, Rifas-Shiman SL, Field AE, Frazier AL, Gillman MW. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol. 2008;112:999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Viswanathan M, Siega-Riz AM, Moos MK, Deierlein A, Mumford S, Knaack J, et al. Outcomes of maternal weight gain. Evid Rep Technol Assess (Full Rep). 2008:1–223.

  4. IOM (Institute of Medicine) and NRC (National Research Council). Weight gain during pregnancy: reexamining the guidelines. Washington, DC, USA: The National Academies Press; 2009.

    Google Scholar 

  5. Deputy NP, Sharma AJ, Kim SY. Gestational weight gain - United States, 2012 and 2013. MMWR Morb Mortal Wkly Rep. 2015;64:1215–20.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Devlieger R, Benhalima K, Damm P, Van Assche A, Mathieu C, Mahmood T, et al. Maternal obesity in Europe: where do we stand and how to move forward?: a scientific paper commissioned by the European Board and College of Obstetrics and Gynaecology (EBCOG). Eur J Obstet Gynecol Reprod Biol. 2016;201:203–8.

    Article  PubMed  Google Scholar 

  7. Chung JG, Taylor RS, Thompson JM, Anderson NH, Dekker GA, Kenny LC, et al. Gestational weight gain and adverse pregnancy outcomes in a nulliparous cohort. Eur J Obstet Gynecol Reprod Biol. 2013;167:149–53.

    Article  PubMed  Google Scholar 

  8. Butte NF, Ellis KJ, Wong WW, Hopkinson JM, Smith EO. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obstet Gynecol. 2003;189:1423–32.

    Article  PubMed  Google Scholar 

  9. Lederman SA, Paxton A, Heymsfield SB, Wang J, Thornton J, Pierson RN Jr. Body fat and water changes during pregnancy in women with different body weight and weight gain. Obstet Gynecol. 1997;90(4 Pt 1):483–8.

    Article  CAS  PubMed  Google Scholar 

  10. Adamo KB, Ferraro ZM, Brett KE. Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health. 2012;9:1263–307.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hytten FE, Thomson AM, Taggart N. Total body water in normal pregnancy. J Obstet Gynaecol Br Commonw. 1966;73:553–61.

    Article  CAS  PubMed  Google Scholar 

  12. Balani J, Hyer S, Johnson A, Shehata H. The importance of visceral fat mass in obese pregnant women and relation with pregnancy outcomes. Obstet Med. 2014;7:22–5.

    Article  PubMed  Google Scholar 

  13. Bartha JL, Marin-Segura P, Gonzalez-Gonzalez NL, Wagner F, Aguilar-Diosdado M, Hervias-Vivancos B. Ultrasound evaluation of visceral fat and metabolic risk factors during early pregnancy. Obesity (Silver Spring). 2007;15:2233–9.

    Article  Google Scholar 

  14. Pitkin RM. Nutritional support in obstetrics and gynecology. Clin Obstet Gynecol. 1976;19:489–513.

    Article  CAS  PubMed  Google Scholar 

  15. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49:177–87.

    Article  PubMed  Google Scholar 

  16. Forsum E, Sadurskis A, Wager J. Resting metabolic rate and body composition of healthy Swedish women during pregnancy. Am J Clin Nutr. 1988;47:942–7.

    Article  CAS  PubMed  Google Scholar 

  17. Stevens-Simon C, McAnarney ER, Roghmann KJ, Forbes GB. Composition of gestational weight gain in adolescent pregnancy. J Matern Fetal Med. 1997;6:79–86.

    CAS  PubMed  Google Scholar 

  18. Purdie DW, Aaron JE, Selby PL. Bone histology and mineral homeostasis in human pregnancy. Br J Obstet Gynaecol. 1988;95:849–54.

    Article  CAS  PubMed  Google Scholar 

  19. van Raaij JM, Peek ME, Vermaat-Miedema SH, Schonk CM, Hautvast JG. New equations for estimating body fat mass in pregnancy from body density or total body water. Am J Clin Nutr. 1988;48:24–9.

    Article  PubMed  Google Scholar 

  20. Hytten FE, Robertson EG. Maternal water metabolism in pregnancy. Proc R Soc Med. 1971;64:1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002;26:1596–609.

    Article  CAS  PubMed  Google Scholar 

  22. Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993;9:480–91. Discussion 92

    CAS  PubMed  Google Scholar 

  23. Lof M, Forsum E. Hydration of fat-free mass in healthy women with special reference to the effect of pregnancy. Am J Clin Nutr. 2004;80:960–5.

    Article  CAS  PubMed  Google Scholar 

  24. Prentice AM, Goldberg GR, Davies HL, Murgatroyd PR, Scott W. Energy-sparing adaptations in human pregnancy assessed by whole-body calorimetry. Br J Nutr. 1989;62:5–22.

    Article  CAS  PubMed  Google Scholar 

  25. Lederman SA, Paxton A, Heymsfield SB, Wang J, Thornton J, Pierson RN Jr.. Maternal body fat and water during pregnancy: do they raise infant birth weight? Am J Obstet Gynecol. 1999;180(Pt 1):235–40.

    Article  CAS  PubMed  Google Scholar 

  26. Kopp-Hoolihan LE, van Loan MD, Wong WW, King JC. Fat mass deposition during pregnancy using a four-component model. J Appl Physiol (1985). 1999;87:196–202.

    Article  CAS  Google Scholar 

  27. Bleker OP, Hoogland HJ. Short review: ultrasound in the estimation of human intrauterine placental growth. Placenta. 1981;2:275–8.

    Article  CAS  PubMed  Google Scholar 

  28. Almog B, Shehata F, Aljabri S, Levin I, Shalom-Paz E, Shrim A. Placenta weight percentile curves for singleton and twins deliveries. Placenta. 2011;32:58–62.

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JM, Irgens LM, Skjaerven R, Rasmussen S. Placenta weight percentile curves for singleton deliveries. BJOG. 2007;114:715–20.

    Article  CAS  PubMed  Google Scholar 

  30. Wallace JM, Bhattacharya S, Horgan GW. Gestational age, gender and parity specific centile charts for placental weight for singleton deliveries in Aberdeen, UK. Placenta. 2013;34:269–74.

    Article  CAS  PubMed  Google Scholar 

  31. Ounpraseuth ST, Magann EF, Spencer HJ, Rabie NZ, Sandlin AT. Normal amniotic fluid volume across gestation: comparison of statistical approaches in 1190 normal amniotic fluid volumes. J Obstet Gynaecol Res. 2017;43:1122–31.

    Article  PubMed  Google Scholar 

  32. Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189:1698–704.

    Article  PubMed  Google Scholar 

  33. Eriksson B, Lof M, Eriksson O, Hannestad U, Forsum E. Fat-free mass hydration in newborns: assessment and implications for body composition studies. Acta Paediatr. 2011;100:680–6.

    Article  PubMed  Google Scholar 

  34. Hull HR, Thornton JC, Ji Y, Paley C, Rosenn B, Mathews P, et al. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205:211 e1–7.

    Article  Google Scholar 

  35. Koo B, Walters J, Hockman E, Koo W. Body composition of newborn twins: intrapair differences. J Am Coll Nutr. 2002;21:245–9.

    Article  PubMed  Google Scholar 

  36. Lederman SA. Pregnancy. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editor. Human body composition. 2nd ed. Champaign, IL, USA: Human Kinetics; 2005.

    Google Scholar 

  37. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.

    Article  CAS  PubMed  Google Scholar 

  38. Huston Presley L, Wong WW, Roman NM, Amini SB, Catalano PM. Anthropometric estimation of maternal body composition in late gestation. Obstet Gynecol. 2000;96:33–7.

    Article  CAS  PubMed  Google Scholar 

  39. Paxton A, Lederman SA, Heymsfield SB, Wang J, Thornton JC, Pierson RN Jr. Anthropometric equations for studying body fat in pregnant women. Am J Clin Nutr. 1998;67:104–10.

    Article  CAS  PubMed  Google Scholar 

  40. Forsum E, Sadurskis A, Wager J. Estimation of body fat in healthy Swedish women during pregnancy and lactation. Am J Clin Nutr. 1989;50:465–73.

    Article  CAS  PubMed  Google Scholar 

  41. Butte NF, Wills C, Smith EO, Garza C. Prediction of body density from skinfold measurements in lactating women. Br J Nutr. 1985;53:485–9.

    Article  CAS  PubMed  Google Scholar 

  42. Durnin JV, McKillop FM, Grant S, Fitzgerald G. Energy requirements of pregnancy in Scotland. Lancet. 1987;2:897–900.

    Article  CAS  PubMed  Google Scholar 

  43. Ehrenberg HM, Huston-Presley L, Catalano PM. The influence of obesity and gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. Am J Obstet Gynecol. 2003;189:944–8.

    Article  PubMed  Google Scholar 

  44. Taggart NR, Holliday RM, Billewicz WZ, Hytten FE, Thomson AM. Changes in skinfolds during pregnancy. Br J Nutr. 1967;21:439–51.

    Article  CAS  PubMed  Google Scholar 

  45. Pipe NG, Smith T, Halliday D, Edmonds CJ, Williams C, Coltart TM. Changes in fat, fat-free mass and body water in human normal pregnancy. Br J Obstet Gynaecol. 1979;86:929–40.

    Article  CAS  PubMed  Google Scholar 

  46. Heymsfield SB, Bourgeois B, Ng BK, Sommer MJ, Li X, Shepherd JA. Digital anthopometry: a critical review. Eur J Clin Nutr. 2018. Under review.

  47. Francis KT. Body-composition assessment using underwater weighing techniques. Phys Ther. 1990;70:657–62. Discussion 62–3

    Article  CAS  PubMed  Google Scholar 

  48. Tantucci C, Bottone D, Borghesi A, Guerini M, Quadri F, Pini L. Methods for measuring lung volumes: is there a better one? Respiration. 2016;91:273–80.

    Article  CAS  PubMed  Google Scholar 

  49. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27:1692–7.

    Article  CAS  PubMed  Google Scholar 

  50. Crapo RO, Morris AH, Clayton PD, Nixon CR. Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir. 1982;18:419–25.

    CAS  PubMed  Google Scholar 

  51. Henriksson P, Lof M, Forsum E. Assessment and prediction of thoracic gas volume in pregnant women: an evaluation in relation to body composition assessment using air displacement plethysmography. Br J Nutr. 2013;109:111–7.

    Article  CAS  PubMed  Google Scholar 

  52. Marshall NE, Murphy EJ, King JC, Haas EK, Lim JY, Wiedrick J, et al. Comparison of multiple methods to measure maternal fat mass in late gestation. Am J Clin Nutr. 2016;103:1055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jensen D, Webb KA, Davies GA, O’Donnell DE. Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation. J Physiol. 2008;586:4735–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knuttgen HG, Emerson K Jr. Physiological response to pregnancy at rest and during exercise. J Appl Physiol (1985). 1974;36:549–53.

    Article  CAS  Google Scholar 

  55. International Atomic Energy Agency. Introduction to body composition assessment using the deuterium dilution technique with analysis of saliva samples by Fourier transform infrared spectrometry. Vienna: IAEA; 2010.

    Google Scholar 

  56. Pace N, Rathbun EN. Studies on body composition .3. the body water and chemically combined nitrogen content in relation to fat content. J Biol Chem. 1945;158:685–91.

    CAS  Google Scholar 

  57. Lof M, Forsum E. Evaluation of bioimpedance spectroscopy for measurements of body water distribution in healthy women before, during, and after pregnancy. J Appl Physiol (1985). 2004;96:967–73.

    Article  Google Scholar 

  58. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol (1985). 1986;60:1327–32.

    Article  CAS  Google Scholar 

  59. Boyle VT, Thorstensen EB, Thompson JMD, McCowan LME, Mitchell EA, Godfrey KM, et al. The relationship between maternal 25-hydroxyvitamin D status in pregnancy and childhood adiposity and allergy: an observational study. Int J Obes (Lond). 2017;41:1755–60.

    Article  CAS  Google Scholar 

  60. Facca TA, Mastroianni-Kirsztajn G, Sabino ARP, Passos MT, Dos Santos LF, Fama EAB, et al. Pregnancy as an early stress test for cardiovascular and kidney disease diagnosis. Pregnancy Hypertens. 2017, https://doi.org/10.1016/j.preghy.2017.11.008.

  61. Piuri G, Ferrazzi E, Bulfoni C, Mastricci L, Di Martino D, Speciani AF. Longitudinal changes and correlations of bioimpedance and anthropometric measurements in pregnancy: Simple possible bed-side tools to assess pregnancy evolution. J Matern Fetal Neonatal Med. 2017;30:2824–30.

    Article  CAS  PubMed  Google Scholar 

  62. Kugananthan S, Gridneva Z, Lai CT, Hepworth AR, Mark PJ, Kakulas F. et al. Associations between maternal body composition and appetite hormones and macronutrients in human milk. Nutrients. 2017;9:252.

    Article  PubMed Central  Google Scholar 

  63. Catalano PM, Wong WW, Drago NM, Amini SB. Estimating body composition in late gestation: a new hydration constant for body density and total body water. Am J Physiol. 1995;268(Pt 1):E153–8.

    CAS  PubMed  Google Scholar 

  64. Fidanza F. The density of fat-free body mass during pregnancy. Int J Vitam Nutr Res. 1987;57:104.

    CAS  PubMed  Google Scholar 

  65. Hopkinson JM, Butte NF, Ellis KJ, Wong WW, Puyau MR, Smith EO. Body fat estimation in late pregnancy and early postpartum: comparison of two-, three-, and four-component models. Am J Clin Nutr. 1997;65:432–8.

    Article  CAS  PubMed  Google Scholar 

  66. Seitchik J. Total body water and total body density of pregnant women. Obstet Gynecol. 1967;29:155–66.

    CAS  PubMed  Google Scholar 

  67. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987;46:537–56.

    Article  CAS  PubMed  Google Scholar 

  68. Bernstein IM, Goran MI, Amini SB, Catalano PM. Differential growth of fetal tissues during the second half of pregnancy. Am J Obstet Gynecol. 1997;176(1 Pt 1):28–32.

    Article  CAS  PubMed  Google Scholar 

  69. Larciprete G, Valensise H, Vasapollo B, Novelli GP, Parretti E, Altomare F, et al. Fetal subcutaneous tissue thickness (SCTT) in healthy and gestational diabetic pregnancies. Ultrasound Obstet Gynecol. 2003;22:591–7.

    Article  CAS  PubMed  Google Scholar 

  70. Moyer-Mileur LJ, Slater H, Thomson JA, Mihalopoulos N, Byrne J, Varner MW. Newborn adiposity measured by plethysmography is not predicted by late gestation two-dimensional ultrasound measures of fetal growth. J Nutr. 2009;139:1772–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schwartz J, Galan H. Ultrasound in assessment of fetal growth disorders: is there a role for subcutaneous measurements? Ultrasound Obstet Gynecol. 2003;22:329–35.

    Article  CAS  PubMed  Google Scholar 

  72. Ikenoue S, Waffarn F, Sumiyoshi K, Ohashi M, Ikenoue C, Buss C, et al. Association of ultrasound-based measures of fetal body composition with newborn adiposity. Pediatr Obes. 2017;12(Suppl 1):86–93.

    Article  PubMed  Google Scholar 

  73. Moore GS, Allshouse AA, Fisher BM, Kahn BF, Hernandez TL, Reece MS, et al. Can fetal limb soft tissue measurements in the third trimester predict neonatal adiposity? J Ultrasound Med. 2016;35:1915–24.

    Article  PubMed  Google Scholar 

  74. Kuczmarski RJ, Fanelli MT, Koch GG. Ultrasonic assessment of body composition in obese adults: overcoming the limitations of the skinfold caliper. Am J Clin Nutr. 1987;45:717–24.

    Article  CAS  PubMed  Google Scholar 

  75. Stevens-Simon C, Thureen P, Barrett J, Stamm E. Skinfold caliper and ultrasound assessments of change in the distribution of subcutaneous fat during adolescent pregnancy. Int J Obes Relat Metab Disord. 2001;25:1340–5.

    Article  CAS  PubMed  Google Scholar 

  76. Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann NY Acad Sci. 2015;1353:41–59.

    Article  PubMed  Google Scholar 

  77. Pregnancy and medical radiation [press release], 2000.

  78. Kinoshita T, Itoh M. Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: the ratio of visceral fat to subcutaneous fat in the abdomen. Gynecol Obstet Invest. 2006;61:115–8.

    Article  PubMed  Google Scholar 

  79. Straughen JK, Trudeau S, Misra VK. Changes in adipose tissue distribution during pregnancy in overweight and obese compared with normal weight women. Nutr Diabetes. 2013;3:e84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Souza LR, Berger H, Retnakaran R, Vlachou PA, Maguire JL, Nathens AB, et al. Hepatic fat and abdominal adiposity in early pregnancy together predict impaired glucose homeostasis in mid-pregnancy. Nutr Diabetes. 2016;6:e229.

    Article  PubMed  PubMed Central  Google Scholar 

  81. De Souza LR, Berger H, Retnakaran R, Maguire JL, Nathens AB, Connelly PW, et al. First-trimester maternal abdominal adiposity predicts dysglycemia and gestational diabetes mellitus in midpregnancy. Diabetes Care. 2016;39:61–4.

    Article  PubMed  Google Scholar 

  82. Pontual AC, Figueiroa JN, De Souza LR, Ray JG, Alves JG. Visceral adiposity in the first half of pregnancy in association with glucose, lipid and insulin profiles in later pregnancy: a cohort study. Matern Child Health J. 2016;20:1720–5.

    Article  PubMed  Google Scholar 

  83. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am J Obstet Gynecol. 1985;151:333–7.

    Article  CAS  PubMed  Google Scholar 

  84. Tsai R, Raptis C, Fowler KJ, Owen JW, Mellnick VM. MRI of suspected appendicitis during pregnancy: interradiologist agreement, indeterminate interpretation and the meaning of non-visualization of the appendix. Br J Radiol. 2017;90:20170383.

    Article  PubMed  Google Scholar 

  85. Daimon A, Terai Y, Nagayasu Y, Okamoto A, Sano T, Suzuki Y, et al. A case of intestinal obstruction in pregnancy diagnosed by MRI and treated by intravenous hyperalimentation. Case Rep Obstet Gynecol. 2016;2016:8704035.

    PubMed  PubMed Central  Google Scholar 

  86. Holmes S, Kirkpatrick ID, Zelop CM, Jassal DS. MRI evaluation of maternal cardiac displacement in pregnancy: implications for cardiopulmonary resuscitation. Am J Obstet Gynecol. 2015;213:401 e1–5.

    Article  Google Scholar 

  87. Girardi G. MRI-based methods to detect placental and fetal brain abnormalities in utero. J Reprod Immunol. 2016;114:86–91.

    Article  PubMed  Google Scholar 

  88. Sohlstrom A, Forsum E. Changes in adipose tissue volume and distribution during reproduction in Swedish women as assessed by magnetic resonance imaging. Am J Clin Nutr. 1995;61:287–95.

    Article  CAS  PubMed  Google Scholar 

  89. Sohlstrom A, Wahlund LO, Forsum E. Adipose tissue distribution as assessed by magnetic resonance imaging and total body fat by magnetic resonance imaging, underwater weighing, and body-water dilution in healthy women. Am J Clin Nutr. 1993;58:830–8.

    Article  CAS  PubMed  Google Scholar 

  90. Forbes S, Barr SM, Reynolds RM, Semple S, Gray C, Andrew R, et al. Convergence in insulin resistance between very severely obese and lean women at the end of pregnancy. Diabetologia. 2015;58:2615–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anblagan D, Deshpande R, Jones NW, Costigan C, Bugg G, Raine-Fenning N, et al. Measurement of fetal fat in utero in normal and diabetic pregnancies using magnetic resonance imaging. Ultrasound Obstet Gynecol. 2013;42:335–40.

    Article  CAS  PubMed  Google Scholar 

  92. Berger-Kulemann V, Brugger PC, Reisegger M, Klein K, Hachemian N, Koelblinger C, et al. Quantification of the subcutaneous fat layer with MRI in fetuses of healthy mothers with no underlying metabolic disease vs. fetuses of diabetic and obese mothers. J Perinat Med. 2011;40:179–84.

    PubMed  Google Scholar 

  93. Ward LC, Poston L, Godfrey KM, Koletzko B. Assessing early growth and adiposity: report from an EarlyNutrition Academy workshop. Ann Nutr Metab. 2013;63:120–30.

    Article  CAS  PubMed  Google Scholar 

  94. Takahashi K, Ohkuchi A, Furukawa R, Matsubara S, Suzuki M. Establishing measurements of subcutaneous and visceral fat area ratio in the early second trimester by magnetic resonance imaging in obese pregnant women. J Obstet Gynaecol Res. 2014;40:1304–7.

    Article  PubMed  Google Scholar 

  95. Poppitt SD, Prentice AM, Goldberg GR, Whitehead RG. Energy-sparing strategies to protect human fetal growth. Am J Obstet Gynecol. 1994;171:118–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by National Institute of Diabetes and Digestive and Kidney Diseases (U01DK094418, R01DK099175).

Author contributions

JM drafted the manuscript. KLM and LMR critically reviewed and revised the paper, and all authors read and approved the final version of the submitted and published version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne Maree Redman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Most, J., Marlatt, K.L., Altazan, A.D. et al. Advances in assessing body composition during pregnancy. Eur J Clin Nutr 72, 645–656 (2018). https://doi.org/10.1038/s41430-018-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0152-8

This article is cited by

Search

Quick links