The capacity–load model of non-communicable disease risk: understanding the effects of child malnutrition, ethnicity and the social determinants of health

Abstract

The capacity–load model is a conceptual model developed to improve understanding of the life-course aetiology of non-communicable diseases (NCDs) and their ecological and societal risk factors. The model addresses continuous associations of both (a) nutrition and growth patterns in early life and (b) lifestyle factors at older ages with NCD risk. Metabolic capacity refers to physiological traits strongly contingent on early nutrition and growth during the first 1000 days, which promote the long-term capacity for homeostasis in the context of fuel metabolism and cardiovascular health. Metabolic load refers to components of nutritional status and lifestyle that challenge homeostasis. The higher the load, and the lower the capacity, the greater the NCD risk. The model therefore helps understand dose–response associations of both early development and later phenotype with NCD risk. Infancy represents a critical developmental period, during which slow growth can constrain metabolic capacity, whereas rapid weight gain may elevate metabolic load. Severe acute malnutrition in early childhood (stunting, wasting) may continue to deplete metabolic capacity, and confer elevated susceptibility to NCDs in the long term. The model can be applied to associations of NCD risk with socio-economic position (SEP): lower SEP is generally associated with lower capacity but often also with elevated load. The model can also help explain ethnic differences in NCD risk, as both early growth patterns and later body composition differ systematically between ethnic groups. Recent work has begun to clarify the role of organ development in metabolic capacity, which may further contribute to ethnic differences in NCD risk.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6 Suppl):588S–95S.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. 2017;8:513–9.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Rook G, Backhed F, Levin BR, McFall-Ngai MJ, McLean AR. Evolution, human-microbe interactions, and life history plasticity. Lancet. 2017;390:521–30.

    Article  PubMed  Google Scholar 

  4. 4.

    Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865–75.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res. 2001;2:139–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130(4 Pt 1):278–84.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Li Y, Ley SH, Tobias DK, Chiuve SE, VanderWeele TJ, Rich-Edwards JW, et al. Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ. 2015;351:h3672.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wells JC. The thrifty phenotype: an adaptation in growth or metabolism? Am J Hum Biol. 2011;23:65–75.

    Article  PubMed  Google Scholar 

  11. 11.

    Wells JC. The metabolic ghetto: an evolutionary perspective on nutrition, power relations and chronic disease. Cambridge: Cambridge University Press; 2016.

    Google Scholar 

  12. 12.

    Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hemachandra AH, Klebanoff MA. Use of serial ultrasound to identify periods of fetal growth restriction in relation to neonatal anthropometry. Am J Hum Biol. 2006;18:791–7.

    Article  PubMed  Google Scholar 

  14. 14.

    Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease-the hypothesis revisited. BMJ. 1999;319:245–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Singhal A, Kennedy K, Lanigan J, Fewtrell M, Cole TJ, Stephenson T, et al. Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized controlled trials. Am J Clin Nutr. 2010;92:1133–44.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–101.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. The biology of human starvation. Minneapolis: University of Minnesota Press; 1950.

    Google Scholar 

  18. 18.

    Enesco M, LeBlond CP. Increase in cell number as a factor in the growth of the organs and tissues of the young male rat. J Embryol Exp Morphol. 1962;10:530–62.

    Google Scholar 

  19. 19.

    Adair LS, Martorell R, Stein AD, Hallal PC, Sachdev HS, Prabhakaran D, et al. Size at birth, weight gain in infancy and childhood, and adult blood pressure in 5 low- and middle-income-country cohorts: when does weight gain matter? Am J Clin Nutr. 2009;89:1383–92.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Leon DA, Koupilova I, Lithell HO, Berglund L, Mohsen R, Vagero D, et al. Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. BMJ. 1996;312:401–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Li Y, Ley SH, VanderWeele TJ, Curhan GC, Rich-Edwards JW, Willett WC, et al. Joint association between birth weight at term and later life adherence to a healthy lifestyle with risk of hypertension: a prospective cohort study. BMC Med. 2015;13:175.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300:2886–97.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wu CY, Chou YC, Huang N, Chou YJ, Hu HY, Li CP. Association of body mass index with all-cause and cardiovascular disease mortality in the elderly. PLoS ONE. 2014;9:e102589.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lelijveld N, Seal A, Wells JC, Kirkby J, Opondo C, Chimwezi E, et al. Chronic disease outcomes after severe acute malnutrition in Malawian children (ChroSAM): a cohort study. Lancet Glob Health. 2016;4:e654–662.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Office for National Statistics. Inequality in healthy life expectancy at birth by national deciles of area deprivation: England, 2009–11. London: Crown; 2014.

  26. 26.

    Marmot M. Social determinants of health inequalities. Lancet. 2005;365:1099–104.

    Article  PubMed  Google Scholar 

  27. 27.

    Victora CG, Barros FC, Vaughan JP, Martines JC, Beria JU. Birthweight, socio-economic status and growth of Brazilian infants. Ann Hum Biol. 1987;14:49–57.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Barros AJ, Victora CG, Horta BL, Goncalves HD, Lima RC, Lynch J. Effects of socioeconomic change from birth to early adulthood on height and overweight. Int J Epidemiol. 2006;35:1233–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Subramanian SV, Özaltin E, Finlay JE. Height of nations: a socioeconomic analysis of cohort differences and patterns among women in 54 low- to middle-income countries. PLoS ONE. 2011;6:e18962.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    de la Grandmaison GL, Clairand I, Durigon M. Organ weight in 684 adult autopsies: new tables for a Caucasoid population. Forensic Sci Int. 2001;119:149–54.

    Article  PubMed  Google Scholar 

  31. 31.

    Borghol N, Suderman M, McArdle W, Racine A, Hallett M, Pembrey M, et al. Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol. 2012;41:62–74.

    Article  PubMed  Google Scholar 

  32. 32.

    Wardle J, Waller J, Jarvis MJ. Sex differences in the association of socioeconomic status with obesity. Am J Public Health. 2002;92:1299–304.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Martorell R, Khan LK, Hughes ML, Grummer-Strawn LM. Obesity in women from developing countries. Eur J Clin Nutr. 2000;54:247–52.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hruschka DJ, Brewis AA. Absolute wealth and world region strongly predict overweight among women (ages 18-49) in 360 populations across 36 developing countries. Econ Hum Biol. 2012;11:337–44.

    Article  PubMed  Google Scholar 

  35. 35.

    Monteiro CA, Conde WL, Lu B, Popkin BM. Obesity and inequities in health in the developing world. Int J Obes. 2004;28:1181–6.

    CAS  Article  Google Scholar 

  36. 36.

    Misra A, Sharma R, Pandey RM, Khanna N. Adverse profile of dietary nutrients, anthropometry and lipids in urban slum dwellers of northern India. Eur J Clin Nutr. 2001;55:727–34.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bentley A, Das S, Alcock G, Shah More N, Pantvaidya S, Osrin D. Malnutrition and infant and young child feeding in informal settlements in Mumbai, India: findings from a census. Food Sci Nutr. 2015;3:257–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kelly Y, Panico L, Bartley M, Marmot M, Nazroo J, Sacker A. Why does birthweight vary among ethnic groups in the UK? Findings from the Millennium Cohort Study. J Public Health (Oxf). 2009;31:131–7.

    CAS  Article  Google Scholar 

  39. 39.

    Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes. 2003;27:173–80.

    CAS  Article  Google Scholar 

  40. 40.

    Stanfield KM, Wells JC, Fewtrell MS, Frost C, Leon DA. Differences in body composition between infants of South Asian and European ancestry: the London Mother and Baby Study. Int J Epidemiol. 2012;41:1409–18.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wells JC. Ethnic variability in adiposity and cardiovascular risk: the variable disease selection hypothesis. Int J Epidemiol. 2009;38:63–71.

    Article  PubMed  Google Scholar 

  42. 42.

    Nightingale CM, Rudnicka AR, Owen CG, Wells JC, Sattar N, Cook DG, et al. Influence of adiposity on insulin resistance and glycemia markers among United Kingdom children of South Asian, Black African-Caribbean, and White European origin: Child Heart and Health Study in England. Diabetes Care. 2013;36:1712–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc. 2007;66:423–34.

    Article  PubMed  Google Scholar 

  44. 44.

    Martorell R. Improved nutrition in the first 1000 days and adult human capital and health. Am J Hum Biol. 2017;29. https://doi.org/10.1002/ajhb.22952.

  45. 45.

    Kinra S, Rameshwar Sarma KV, Ghafoorunissa, Mendu VV, Ravikumar R, Mohan V, et al. Effect of integration of supplemental nutrition with public health programmes in pregnancy and early childhood on cardiovascular risk in rural Indian adolescents: long term follow-up of Hyderabad nutrition trial. BMJ. 2008;337:a605.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Petry CJ, Desai M, Ozanne SE, Hales CN. Early and late nutritional windows for diabetes susceptibility. Proc Nutr Soc. 1997;56:233–42.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Latini G, De Mitri B, Del Vecchio A, Chitano G, De Felice C, Zetterstrom R. Foetal growth of kidneys, liver and spleen in intrauterine growth restriction: “programming” causing “metabolic syndrome” in adult age. Acta Paediatr. 2004;93:1635–9.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Wells JC, Devakumar D, Grijalva-Eternod CS, Manandhar DS, Costello A, Osrin D. Blood pressure and the capacity-load model in 8-year-old children from Nepal: testing the contributions of kidney size and intergenerational effects. Am J Hum Biol. 2016;28:555–65.

    Article  PubMed  Google Scholar 

  49. 49.

    Coppoletta JM, Wolbach SB. Body length and organ weights of infants and children: a study of the body length and normal weights of the more important vital organs of the body between birth and twelve years of age. Am J Pathol. 1933;9:55–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wells JC, Pomeroy E, Walimbe SR, Popkin BM, Yajnik CS. The elevated susceptibility to diabetes in india: an evolutionary perspective. Front Public Health. 2016;4:145.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. K. Wells.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wells, J.C.K. The capacity–load model of non-communicable disease risk: understanding the effects of child malnutrition, ethnicity and the social determinants of health. Eur J Clin Nutr 72, 688–697 (2018). https://doi.org/10.1038/s41430-018-0142-x

Download citation

Further reading

Search