Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fasting and glucose induced thermogenesis in response to three ambient temperatures: a randomized crossover trial in the metabolic syndrome

Abstract

Background/objectives

Cold exposure increases thermogenesis and could improve insulin sensitivity. We hypothesized a blunted response in the metabolic syndrome (MetS).

Subjects/methods

Twenty older adults 59 ± 10.4 years (with MetS, MetS+, n = 9; without MetS, MetS−, n = 11) completed a randomized crossover design of 3.5 h exposures to 20, 25 and 27 °C on three visits. After an hour’s rest at the desired temperature, resting metabolic rate (RMR), respiratory quotient (RQ), forearm to fingertip gradients (FFG), and in the ear temperature (IET) were measured over 30 min. An oral glucose tolerance test followed, and serial measurements were continued for 2 h. Venous blood was sampled for clinical chemistry, irisin, and fibroblast growth factor 21(FGF21). A mixed model ANCOVA adjusted data for age, gender, fat mass, fat-free mass and seasonality.

Results

There was a significant MetS×temperature interaction where adjusted RMR was significantly higher in MetS+ compared to MetS− by 12% at 20 °C and by 6% at 25 °C, but similar at 27 °C. FFG increased and IET decreased with decreasing temperature to the same extent in both groups. Fasting irisin and FGF21 did not vary with temperature but the former was significantly higher in MetS−. Adjusted postprandial RQ and insulin to glucose ratios were significantly higher at 20 °C relative to 25 °C. Partial correlation analysis of differences between 27 and 20 °C indicated significant positive relationships between fasting as well as postprandial RQ and the respective changes in irisin and FGF21.

Conclusions

There could be an upward shift of the TNZ in MetS+, but this needs reevaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301:R285–96.

    Article  PubMed  Google Scholar 

  2. Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  3. Lowell B, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404:652–60. https://doi.org/10.1038/35007527

    Article  CAS  PubMed  Google Scholar 

  4. Kingma B, Frijns AJ, Saris WH, van Steenhoven AA, van Marken Lichtenbelt WD, Increased systolic blood pressure after mild cold and rewarming: relation to cold-induced thermogenesis and age. Acta Physiol. 2011;203:419–27.

    Article  CAS  Google Scholar 

  5. van der Lans AAAJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–34038.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Van Pelt RE, Dinneno FA, Seals DR. Age-related decline in RMR in physically active men: relation to exercise volume and energy intake. Am J Physiol Endocrinol Metab. 2001;281:E633–9.

    Article  PubMed  Google Scholar 

  7. Wijers SLJ, Saris Wim HM, Van Marken Lichtenbelt WD. Cold-induced adaptive thermogenesis in lean and obese. Obesity. 2010;18:1092–9.

    Article  PubMed  Google Scholar 

  8. Brychta R, Chen KY. Cold-induced thermogenesis in humans. Eur J Clin Nutr. 2017;71:345–52.

    Article  CAS  PubMed  Google Scholar 

  9. Calton E, Soares MJ, James AP, Woodman RJ. The potential role of irisin in the thermoregulatory responses to mild cold exposure in adults. Am J Hum Bio. 2016;28:699–704.

    Article  Google Scholar 

  10. Gisolfi C, Mora F. The hot brain: survival, temperature and the human body. Cambridge: MIT Press; 2000.

    Google Scholar 

  11. Lemieux H, Blier PU, Tardif JC. Does membrane fatty acid composition modulate mitochondrial functions and their thermal sensitivities? Comp Biochem Physiol A Mol Integr Physiol. 2008;149:20–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chen K, Brychta RJ, Linderman JD, Smith S, Courville A, Dieckmann W, et al. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. J Clin Endocrinol Metab. 2013;98:E1218–23. https://doi.org/10.1210/jc.2012-4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Broeders E, Bouvy ND, van Marken Lichtenbelt WD, Endogenous ways to stimulate brown adipose tissue in humans. Ann Med. 2015;47:123–32.

    Article  CAS  PubMed  Google Scholar 

  14. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Daskalopoulou S, Cooke AB, Gomez YH, Mutter AF, Filippaios A, Mesfum ET, et al. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol. 2014;171:343–52.

    Article  CAS  PubMed  Google Scholar 

  16. Choi H, Kim S, Park JW, Lee NS, Hwang SY, Huh J, et al. Implication of Circulating Irisin Levels with Brown Adipose Tissue and Sarcopenia in Humans. J Clin Endocrinol Metab. 2014;99:2778–85.

    Article  CAS  PubMed  Google Scholar 

  17. Fisher F, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Celi F, Butler PW, Brychta RJ, Linderman JD, Alberobello AT, Smith S, et al. Minimal changes in environmental temperature result in a significant increase in energy expenditure and changes in the hormonal homeostasis in healthy adults. Eur J Endocrinol. 2010;163:863–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Warwick PM, Busby R. Influence of mild cold on 24 h energy expenditure in ‘normally’ clothed adults. Br J Nutr. 1990;63:481–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care. 2005;28:2745–9.

    Article  PubMed  Google Scholar 

  21. Cameron A, Magliano DJ, Zimmet PZ, Welborn T, Shaw JE. The metabolic syndrome in Australia: prevalence using four definitions. Diabetes Res Clin Pract. 2007;77:471–8.

    Article  PubMed  Google Scholar 

  22. Waterhouse DF, McLaughlin AM, Sheehan F, O’Shea D. An examination of the prevalence of IDF- and ATPIII-defined metabolic syndrome in an Irish screening population. Ir J Med Sci. 2009;178:161–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Yan H, Yang R, et al. Prevalence and determinants of metabolic syndrome among adults in a rural area of Northwest China. PLoS One. 2014;9:e91578.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sawant A, Mankeshwar R, Shah S, Raghavan R, Dhongde G, Raje H, et al. Prevalence of metabolic syndrome in urban India. Cholesterol. 2011;2011:920983.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Bonet M, Pico C, Palou. A thermogenesis and the metabolic syndrome. Pathogenesis. Spain: University of The Balearic Islands: Laboratory of Molecular Biology, Nutrition And Biotechnology, Department of Fundamental Biology And Health Sciences; 2006, p. 284–303.

  26. Pathak K, Soares MJ, Zhao Y, James AP, Sherriff JS, Newsholme P. Vitamin D status but not fibroblast growth factor 21 improved postprandial glucose oxidation and insulin sensitivity in the metabolic syndrome. Nutrition. 2017;37:37–42.

    Article  CAS  PubMed  Google Scholar 

  27. Novotny D, Vaverkova H, Karasek D, Lukes J, Slavik L, Malina P et al. Evaluation of total adiponectin, adipocyte fatty acid binding protein and fibroblast growth factor 21 levels in individuals with metabolic syndrome. Physiol Res. 2014;63:219–28.

    CAS  PubMed  Google Scholar 

  28. Zhang X, Yeung DCY, Karpisek M, Stejskal D, Zhou Z, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.

    Article  CAS  PubMed  Google Scholar 

  29. Yan B, Shi X, Zhang H, Pan L, Ma Z, Liu S, et al. Association of serum irisin with metabolic syndrome in obese chinese adults. PLoS One. 2014;9:e94235.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Faul F, Erdfelder E, Lang AG, Buchner A, G*Power3: A flexible statistical power 290 analysis program for the social, behavioral, and biomedical sciences. Beh Res Methods. 2007;39:175–91.

    Article  Google Scholar 

  31. Westerterp-Plantenga MS, van Marken Lichtenbelt WD, Strobbe H, Schrauwen P. Energy metabolism in humans at a lowered ambient temperature. Eur J Clin Nutr. 2002;56:288–96.

    Article  CAS  PubMed  Google Scholar 

  32. Saghaei M, Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4:26. https://doi.org/10.1186/1471-2288-4-26

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alberti K, Zimmet P, Shaw J. Metabolic Syndrome- a new world-wide definition. A consensus Statement from the International Diabetes Federation. Diab Med. 2006;23:469–80.

    Article  CAS  Google Scholar 

  34. Hopkins WG. Calculations for reliability. A New View of Statistics. Internet Society for Sport Science. 2000. http://www.sportsci.org/resource/stats/relycalc.html

  35. Kingma B, Frijns A, van Marken, Lichtenbelt WD, The thermoneutral zone: implications for metabolic studies. Front Biosci. 2012;4:1975–85.

    Article  Google Scholar 

  36. Meigal A. Gross and fine neuromuscular performance at cold shivering. Int J Circumpolar Health. 2002;61:163–72.

    Article  PubMed  Google Scholar 

  37. DeGroot D, Kenney WL, Impaired defense of core temperature in aged humans during mild cold stress. Am J Physiol. 2007;292:R103–R108. https://doi.org/10.1152/ajpregu.00074.2006

    Article  CAS  Google Scholar 

  38. Kingma B, Frijns AJH, Schellen L, van Marken Lichtenbelt WD. Beyond the classic thermoneutral zone: Including thermal comfort. Temp. 2014;1:142–9.

    Google Scholar 

  39. Park K, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98:4899–907.

    Article  CAS  PubMed  Google Scholar 

  40. Fukushima Y, Kurose S, Shinno H, Thu HC, Tamanoi A, Tsutsumi H, et al. Relationships between serum irisin levels and metabolic parameters in Japanese patients with obesity. Obes Sci Pract. 2016;2:203–9. https://doi.org/10.1002/osp4.43

    Article  PubMed  PubMed Central  Google Scholar 

  41. Flatt J. Use and storage of carbohydrate and fat. Am J Clin Nutr. 1995;61:952S–995.

    Article  CAS  PubMed  Google Scholar 

  42. Dauncey M. Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermogenesis. Br J Nutr. 1981;45:257.

    Article  CAS  PubMed  Google Scholar 

  43. Korwutthikulrangsri M, Poomthavorn P, Mahachoklertwattana P, Chanprasertyothin S, Khlairit P, Pongratanakul S. Serum fibroblast growth factor 21 in obese children and its dynamic changes during an oral glucose challenge. Chicago: Endocrine Society’s 96th Annual Meeting and Expo; 2014.

  44. Lin Z, Gong Q, Wu C, Yu J, Lu T, Pan X et al. Dynamic change of serum FGF21 levels in response to glucose challenge in human. J Clin Endocrinol Metab. 2012;97:E1224–8.

    Article  CAS  PubMed  Google Scholar 

  45. Straczkowski M, Kowalska I, Nikolajuk A, Adamska A, Karczewska-Kupczewska M, Lebkowska A, et al. Serum fibroblast growth factor 21 in human obesity: regulation by insulin infusion and relationship with glucose and lipid oxidation. Int J Obes. 2013;37:1386–90.

    Article  CAS  Google Scholar 

  46. van Marken Lichtenbelt WD, Kingma B, van der Lans A, Schellen L. Cold exposure – an approach to increasing energy expenditure in humans. Sci Soc. 2014;25:165–7.

    Google Scholar 

  47. Lorenzo C, Haffner SM, Stancˇa´ kova´ A, Laakso M. Relation of direct and surrogate measures of insulin resistance to cardiovascular risk factors in nondiabetic finnish offspring of type 2 diabetic individuals. J Clin Endocrinol Metab. 2010;95:5082–90.

    Article  CAS  PubMed  Google Scholar 

  48. Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. Clin Invest. 2014;124:515–27. https://doi.org/10.1172/JCI67353

    Article  CAS  Google Scholar 

  49. Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, Pardo M, Casanueva FF, Zulet MA et al. Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutr Diab. 2014;4:e110.

    Article  Google Scholar 

  50. Semba R, Sun K, Ferrucci L. Relationship of serum fibroblast growth factor 21 with abnormal glucose metabolism and insulin resistance: the baltimore longitudinal study of aging. J Clin Endochrinol Metab. 2012;97:1375–82.

    Article  CAS  Google Scholar 

  51. Graham TE. Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med Sci Sports Exerc. 1988;20:185–92.

    Article  Google Scholar 

  52. Pettit S, Marchand I, Graham T. Gender differences in cardiovascular and catecholamine responses to cold-air exposure at rest. Can J Appl Physiol. 1999;24:131–47.

    Article  CAS  PubMed  Google Scholar 

  53. Childs C, Harrison R, Hodkinson C. Tympanic membrane temperature as a measure of core temperature. Arch Dis Child. 1999;80:262–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Chamberlain J, Terndrup TE, Alexander DT, Silverstone FA, Wolf-Klein G, O'Donnell R, et al. Determination of normal ear temperature with an infrared emission detection thermometer. Ann Emerg Med. 1995;25:15–20.

    Article  CAS  PubMed  Google Scholar 

  55. Casa D, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, et al. Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train. 2007;42:333–42.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.S. acknowledges infrastructure support from the School of Public Health Curtin University. K.P. was the recipient of an Australian Postgraduate Award. We thank the reviewers for their insightful comments and attention to detail, which have helped shape this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, K., Woodman, R.J., James, A.P. et al. Fasting and glucose induced thermogenesis in response to three ambient temperatures: a randomized crossover trial in the metabolic syndrome. Eur J Clin Nutr 72, 1421–1430 (2018). https://doi.org/10.1038/s41430-017-0058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-017-0058-x

This article is cited by

Search

Quick links