Article | Published:

Fluid consumption pattern and hydration among 8–14 years-old children

European Journal of Clinical Nutritionvolume 72pages420427 (2018) | Download Citation

Abstract

Background/objectives

Children consume various fluids to meet dietary water intake needs. However, the contribution of different fluid types on hydration is unclear. The purpose of this study was to develop fluid intake patterns and examine their association with hydration, as indicated by 24-h urine osmolality.

Subjects/methods

Two hundred ten (105 girls) healthy children (height: 1.49 ± 0.13 m, weight: 43.4 ± 12.6 kg, body fat: 25.2 ± 7.8%) recorded their fluid intake for two consecutive days, and collected their urine for 24-h during the 2nd day, while conducting their normal daily activities. Urine samples were analyzed for specific gravity and osmolality. Factor analysis with principal components method was applied to extract dietary patterns from six fluid groups. Linear regression analysis evaluated the associations between the extracted dietary patterns and hydration based on 24-h urine osmolality.

Results

The analysis revealed the following six components: 1, characterized by consumption of milk and fresh juice, but not packaged juice; 2, by regular soda and other drinks, but not water; 3, by fresh juice and other drinks; 4, by packaged juice, but not regular soda; 5, by water and milk; and 6, by fresh juice. Component 5 was negatively correlated with urine osmolality (P = 0.001) indicating better hydration, whereas component 2 was positively correlated with urine osmolality (P = 0.001).

Conclusions

A drinking pattern based on water and milk was associated with better hydration, as indicated by lower urine osmolality, whereas drinking regular soda and other drinks but not water was associated with inferior hydration.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Agostoni CV, Bresson JL, Fairweather-Tait S, Flynn A, Golly I, Korhonen H, et al. Scientific opinion on dietary reference values for water: EFSA panel on dietetic products, nutrition and allergies (NSA). EFSA J. 2010;8(3):1–48. https://doi.org/10.2903/j.efsa.2010.1459

  2. 2.

    Panel on Dietary Reference Intakes for Electrolytes and Water. DRI FaNB, Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington^ eDC DC: National Academy Press; 2004.

  3. 3.

    Ferreira-Pêgo C, Guelinckx I, Moreno LA, Kavouras SA, Gandy J, Martinez H, et al. Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur J Nutr. 2015;54(Suppl 2(S2)):35–43. https://doi.org/10.1007/s00394-015-0943-9

  4. 4.

    Iglesia I, Guelinckx I, De Miguel-Etayo PM, González-Gil EM, Salas-Salvadó J, Kavouras SA, et al. Total fluid intake of children and adolescents: cross-sectional surveys in 13 countries worldwide. Eur J Nutr. 2015;54(Suppl 2(S2)):57–67. https://doi.org/10.1007/s00394-015-0946-6

  5. 5.

    Kavouras SA, Bougatsas D, Johnson EC, Arnaoutis G, Tsipouridi S, Panagiotakos DB. Water intake and urinary hydration biomarkers in children. Eur J Clin Nutr. 2017;71(4):530–5. https://doi.org/10.1038/ejcn.2016.218

  6. 6.

    Guelinckx I, Iglesia I, Bottin JH, De Miguel-Etayo P, González-Gil EM, Salas-Salvadó J, et al. Intake of water and beverages of children and adolescents in 13 countries. Eur J Nutr. 2015;54(Suppl 2(S2)):69–79. https://doi.org/10.1007/s00394-015-0955-5

  7. 7.

    Kenney EL, Long MW, Cradock AL, Gortmaker SL. Prevalence of inadequate hydration among US children and disparities by gender and race/ethnicity: National Health and Nutrition Examination Survey, 2009-12. Am J Pub Health. 2015;105(8):e113–118. https://doi.org/10.2105/AJPH.2015.302572

  8. 8.

    Guelinckx I, Frémont-Marquis AS, Eon E, Kavouras SA, Armstrong LE. Assessing hydration in children: From science to practice. Ann Nutr Metab. 2015;66(3):5–9. https://doi.org/10.1159/000381814

  9. 9.

    Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl):1169–75.

  10. 10.

    Fenández-Alvira JM, Iglesia I, Ferreira-Pêgo C, Babio N, Salas-Salvadó J, Moreno LA. Fluid intake in Spanish children and adolescents; a cross-sectional study. Nutrición hospitalaria. 2014;29(5):1163–70. https://doi.org/10.3305/nh.2014.29.5.7420

  11. 11.

    Drewnowski A, Rehm CD, Constant F. Water and beverage consumption among adults in the United States: cross-sectional study using data from NHANES 2005--2010. BMC Pub Health. 2013;13(1):1068 https://doi.org/10.1186/1471-2458-13-1068

  12. 12.

    Bar-David Y, Urkin J, Kozminsky E. The effect of voluntary dehydration on cognitive functions of elementary school children. Acta Paediatr. 2005;94(11):1667–73. https://doi.org/10.1080/08035250500254670

  13. 13.

    Fadda R, Rapinett G, Grathwohl D, Parisi M, Fanari R, Calò CM, et al. Effects of drinking supplementary water at school on cognitive performance in children. Appetite. 2012;59(3):730–7. https://doi.org/10.1016/j.appet.2012.07.005

  14. 14.

    Carroll HA, Betts JA, Johnson L. An investigation into the relationship between plain water intake and glycated Hb (HbA1c): a sex-stratified, cross-sectional analysis of the UK National Diet and Nutrition Survey (2008-12). BJN. 2016;1-11. https://doi.org/10.1017/S0007114516003688

  15. 15.

    Mavani GP, DeVita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med. 2015;2:19 https://doi.org/10.3389/fmed.2015.00019

  16. 16.

    Melander O. Vasopressin, from Regulator to Disease Predictor for Diabetes and Cardiometabolic Risk. Ann Nutr Metab. 2016;68(Suppl 2(2)):24–28. https://doi.org/10.1159/000446201

  17. 17.

    Rothermel J, Kulle A, Holterhus P-M, Toschke C, Lass N, Reinehr T. Copeptin in obese children and adolescents: relationships to body mass index, cortisol and gender. Clin Endocrinol. 2016;85(6):868–73. https://doi.org/10.1111/cen.13235

  18. 18.

    Roussel R, El Boustany R, Bouby N, Potier L, Fumeron F, Mohammedi K et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J Clin Endocrinol Metab 2016;jc20161113. https://doi.org/10.1210/jc.2016-1113

  19. 19.

    Taveau C, Chollet C, Waeckel L, Desposito D, Bichet DG, Arthus M-F, et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia. 2015;58(5):1081–90. https://doi.org/10.1007/s00125-015-3496-9

  20. 20.

    Wannamethee SG, Welsh P, Papacosta O, Lennon L, Whincup PH. Sattar N. Copeptin, insulin resistance and risk of incident diabetes in older men. J Clin Endocrinol Metab. 2015;100(9):JC20152362–20153339. https://doi.org/10.1210/JC.2015-2362

  21. 21.

    Clark WF, Sontrop JM, Huang S-H, Moist L, Bouby N, Bankir L. Hydration and Chronic Kidney Disease Progression: A Critical Review of the Evidence. Am J Nephrol. 2016;43(4):281–92. https://doi.org/10.1159/000445959

  22. 22.

    Roussel R, Velho G, Bankir L. Vasopressin and diabetic nephropathy. Curr Opin Nephrol Hypertens. 2017;1. https://doi.org/10.1097/MNH.0000000000000335

  23. 23.

    Arnaoutis G, Kavouras SA, Stratakis N, Likka M, Mitrakou A, Papamichael C, et al. The effect of hypohydration on endothelial function in young healthy adults. Eur J Nutr. 2017;56(3):1211–7. https://doi.org/10.1007/s00394-016-1170-8

  24. 24.

    Mesirow M, Welsh J. Changing beverage consumption patterns have resulted in fewer liquid calories in the diets of US Children: National Health and Nutrition Examination Survey 2001-10. J Acad Nutr Diet. 2015;115(4):559 https://doi.org/10.1016/j.jand.201555554.09.004. e554

  25. 25.

    Duffey KJ, Huybrechts I, Mouratidou T, Libuda L, Kersting M, De Vriendt T, et al. Beverage consumption among European adolescents in the HELENA study. Eur J Clin Nutr. 2012;66(2):244–52. https://doi.org/10.1038/ejcn.2011.166

  26. 26.

    Adams JD, Kavouras SA, Johnson EC, Jansen LT, Capitan-Jimenez C, Robillard JI, et al. The effect of storing temperature and duration on urinary hydration markers. Int J Sport Nutr Exerc Metab. 2017;27(1):18–24. https://doi.org/10.1123/ijsnem.2016-0098

  27. 27.

    Panagiotakos D. α‐priori versus α‐posterior methods in dietary pattern analysis: a review in nutrition epidemiology. Nutr Bull. 2008;33(4):311–5. https://doi.org/10.1111/j.1467-3010.2008.00731.x

  28. 28.

    Storey ML, Forshee RA, Anderson PA. Beverage consumption in the US population. J Am Diet Assoc. 2006;106(12):1992–2000. https://doi.org/10.1016/j.jada.2006.09.009

  29. 29.

    Perrier ET, Buendia-Jimenez I, Vecchio M, ARMSTRONG LE, Tack I, Klein A. Research article twenty-four-hour urine osmolality as a physiological index of adequate water intake. Dis Markers. 2015;1-8. https://doi.org/10.1155/2015/231063

  30. 30.

    Perrier ET, Armstrong LE, Daudon M, Kavouras S, Lafontan M, Lang F, et al. From state to process: defining hydration. Obesity Fact. 2014;7(Suppl 2):6–12. https://doi.org/10.1159/000360611

  31. 31.

    Drewnowski A, Rehm CD, Constant F. Water and beverage consumption among children age 4-13y in the United States: analyses of 2005-10 NHANES data. Nutr J. 2013;12(1):85 https://doi.org/10.1186/1475-2891-12-85

  32. 32.

    Feferbaum R, de Abreu LC, Leone C. Fluid intake patterns: an epidemiological study among children and adolescents in Brazil. BMC Pub Health. 2012;12:1005 https://doi.org/10.1186/1471-2458-12-1005

  33. 33.

    Stachenfeld NS. Sex hormone effects on body fluid regulation. Exerc Sport Sci Rev. 2008;36(3):152–9. https://doi.org/10.1097/JES.0b013e31817be928

  34. 34.

    Mahler B, Kamperis K, Ankarberg-Lindgren C, Frokiaer J, Djurhuus JC, Rittig S. Puberty alters renal water handling. Am J Physiol Renal Physiol. 2013;305(12):F1728–1735. https://doi.org/10.1152/ajprenal.00283.2013

  35. 35.

    Hancock ML, Bichet DG, Eckert GJ, Bankir L, Wagner MA, Pratt JH. Race, sex, and the regulation of urine osmolality: observations made during water deprivation. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R977–980. https://doi.org/10.1152/ajpregu.00289.2010

  36. 36.

    Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9.

  37. 37.

    Fiorito LM, Marini M, Mitchell DC, Smiciklas-Wright H, Birch LL. Girls’ early sweetened carbonated beverage intake predicts different patterns of beverage and nutrient intake across childhood and adolescence. J Am Diet Assoc. 2010;110(4):543–50. https://doi.org/10.1016/j.jada.2009.12.027

  38. 38.

    Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2013;346:e7492 https://doi.org/10.1136/bmj.e7492

  39. 39.

    Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264(3):224–36. https://doi.org/10.1111/j.1365-2796.2008.01981.x

Download references

Acknowledgements

The study was funded by a research grant from Danone Research. No other financial or in kind support was provided by Danone Research. Funder did not have a role in the study design, sample, and data analysis. However, one of the funder’s employees (JHB) contributed to the manuscript.

Author information

Affiliations

  1. Department of Nutrition and Dietetics, Harokopio University, Athens, Greece

    • Dimitris Bougatsas
    • , Giannis Arnaoutis
    • , Demosthenes B. Panagiotakos
    •  & Spiridoula Tsipouridi
  2. University of Arkansas, Hydration Science Lab, Fayetteville, AR, 7270, USA

    • Adam D. Seal
    •  & Stavros A. Kavouras
  3. University of Wyoming, Human Integrated Physiology Laboratory, Laramie, WY, USA

    • Evan C. Johnson
  4. Danone Research, 91767, Palaiseau, France

    • Jeanne H. Bottin
  5. University of Arkansas for Medical Sciences, Division of Endocrinology, Little Rock, AR, USA

    • Stavros A. Kavouras

Authors

  1. Search for Dimitris Bougatsas in:

  2. Search for Giannis Arnaoutis in:

  3. Search for Demosthenes B. Panagiotakos in:

  4. Search for Adam D. Seal in:

  5. Search for Evan C. Johnson in:

  6. Search for Jeanne H. Bottin in:

  7. Search for Spiridoula Tsipouridi in:

  8. Search for Stavros A. Kavouras in:

Conflict of interest

SAK was a scientific consultant for Quest Diagnostics. SAK and ECJ have active grants with Danone Research. DBP had a grant from the European Hydration Institute and SA Coca-Cola Services NV. ADS is a scientific consultant for Gatorade Sports Science Institute. JHB is a Danone Research employee. The remaining authors declare that they have no competing interests.

Corresponding author

Correspondence to Stavros A. Kavouras.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41430-017-0012-y

Further reading