Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of the ATP synthase increases sensitivity of Escherichia coli carrying mcr-1 to polymyxin B

Abstract

Bacterial infections caused by multidrug-resistant (MDR) gram-negative strains carrying the mobile colistin resistance gene mcr-1 are serious threats to world public health due to the lack of effective treatments. Inhibition of the ATP synthase makes bacteria such as Staphylococcus aureus and Klebsiella pneumoniae more sensitive to polymyxin. This provides new strategies for treating infections caused by polymyxins-resistant bacteria carrying mcr-1. Six mcr-1-positive strains were isolated from clinical samples, and all were identified as Escherichia coli. Here we investigated several ATP synthase inhibitors, N,N’-dicyclohexylcarbodiimide (DCCD), resveratrol, and piceatannol, for their antibacterial effects against the mcr-1-positive strains combined with polymyxin B (POL). Checkerboard assay, time-kill assay, biofilm inhibition and eradication assay indicated the significant synergistic effect of ATP synthase inhibitors/POL combination in vitro. Meanwhile, mouse infection model experiment was also performed, showing a 5 log10 reduction of the pathogen after treatment with the resveratrol/POL combination. Moreover, adding adenosine disodium triphosphate (Na2ATP) could inhibit the antibacterial effect of the ATP synthase inhibitors/POL combination. In conclusion, our study confirmed that inhibition of ATP production could increase the susceptibility of bacteria carrying mcr-1 to polymyxins. This provides a new strategy against polymyxins-resistant bacteria infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request. Most of the data is included in this published article.

References

  1. Domingues MM, Inacio RG, Raimundo JM, Martins M, Castanho MA, Santos NC. Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems. Biopolymers. 2012;98:338–44. https://doi.org/10.1002/bip.22095.

    Article  CAS  PubMed  Google Scholar 

  2. Moffatt JH, Harper M, Boyce JD. Mechanisms of polymyxin resistance. Adv Exp Med Biol. 2019;1145:55–71. https://doi.org/10.1007/978-3-030-16373-0_5.

    Article  CAS  PubMed  Google Scholar 

  3. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care. 2006;10:R27. https://doi.org/10.1186/cc3995.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiaomin S, Yiming L, Yuying Y, Zhangqi S, Yongning W, Shaolin W. Global impact of mcr-1-positive Enterobacteriaceae bacteria on "one health". Crit Rev Microbiol. 2020;46:565–77. https://doi.org/10.1080/1040841X.2020.1812510.

    Article  PubMed  Google Scholar 

  5. Nang SC, Li J, Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol. 2019;45:131–61. https://doi.org/10.1080/1040841X.2018.1492902.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643. https://doi.org/10.3389/fmicb.2014.00643.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents. 2016;48:583–91. https://doi.org/10.1016/j.ijantimicag.2016.06.023.

    Article  CAS  PubMed  Google Scholar 

  8. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8. https://doi.org/10.1016/S1473-3099(15)00424-7.

    Article  CAS  PubMed  Google Scholar 

  9. Hussein NH, Al-Kadmy I, Taha BM, Hussein JD. Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Mol Biol Rep. 2021;48:2897–907. https://doi.org/10.1007/s11033-021-06307-y.

    Article  CAS  PubMed  Google Scholar 

  10. Vestergaard M, Bald D, Ingmer H. Targeting the ATP synthase in bacterial and fungal pathogens: beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist. 2022;29:29–41. https://doi.org/10.1016/j.jgar.2022.01.026.

    Article  CAS  PubMed  Google Scholar 

  11. Chan B, Khadem TM, Brown J. A review of tuberculosis: focus on bedaquiline. Am J Health Syst Pharm. 2013;70:1984–94. https://doi.org/10.2146/ajhp130199.

    Article  CAS  PubMed  Google Scholar 

  12. Vestergaard M, Nohr-Meldgaard K, Bojer MS, Krogsgard NC, Meyer RL, Slavetinsky C, Peschel A, Ingmer H. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. mBio. 2017;8. https://doi.org/10.1128/mBio.01114-17.

  13. Liu A, Tran L, Becket E, Lee K, Chinn L, Park E, Tran K, Miller JH. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother. 2010;54:1393–403. https://doi.org/10.1128/AAC.00906-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu WB, Pan Q, Ye BC. Glucose-induced cyclic lipopeptides resistance in bacteria via ATP maintenance through enhanced glycolysis. iScience. 2019;21:135–44. https://doi.org/10.1016/j.isci.2019.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, Li J, Velkov T. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot. 2014;67:147–51. https://doi.org/10.1038/ja.2013.111.

    Article  CAS  Google Scholar 

  16. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100, 31st edition. J Clin Microbiol. 2021;59:e21321. https://doi.org/10.1128/JCM.00213-21.

    Article  Google Scholar 

  17. Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GR, Staunton JE, Jin X, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009;27:659–66. https://doi.org/10.1038/nbt.1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qu S, Dai C, Shen Z, Tang Q, Wang H, Zhai B, Zhao L, Hao Z. Mechanism of synergy between tetracycline and quercetin against antibiotic resistant Escherichia coli. Front Microbiol. 2019;10:2536. https://doi.org/10.3389/fmicb.2019.02536.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52:1. https://doi.org/10.1093/jac/dkg301.

    Article  PubMed  Google Scholar 

  20. Toei M, Noji H. Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide. J Biol Chem. 2013;288:25717–26. https://doi.org/10.1074/jbc.M113.482455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dadi PK, Ahmad M, Ahmad Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int J Biol Macromol. 2009;45:72–79. https://doi.org/10.1016/j.ijbiomac.2009.04.004.

    Article  CAS  PubMed  Google Scholar 

  22. Balemans W, Vranckx L, Lounis N, Pop O, Guillemont J, Vergauwen K, Mol S, Gilissen R, Motte M, Lancois D, et al. Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria. Antimicrob Agents Chemother. 2012;56:4131–9. https://doi.org/10.1128/AAC.00273-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheah SE, Li J, Tsuji BT, Forrest A, Bulitta JB, Nation RL. Colistin and polymyxin B dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob Agents Chemother. 2016;60:3921–33. https://doi.org/10.1128/AAC.02927-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim JS, Yu JK, Jeon SJ, Park SH, Han S, Park SH, Kang M, Jang JI, Shin EK, Kim J, et al. Distribution of mcr genes among carbapenem-resistant Enterobacterales clinical isolates: high prevalence of mcr-positive Enterobacter cloacae complex in Seoul, Republic of Korea. Int J Antimicrob Agents. 2021;58:106418. https://doi.org/10.1016/j.ijantimicag.2021.106418.

    Article  CAS  PubMed  Google Scholar 

  25. Tran TB, Wang J, Doi Y, Velkov T, Bergen PJ, Li J. Novel polymyxin combination with antineoplastic mitotane improved the bacterial killing against polymyxin-resistant multidrug-resistant Gram-negative pathogens. Front Microbiol. 2018;9:721. https://doi.org/10.3389/fmicb.2018.00721.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ayerbe-Algaba R, Gil-Marques ML, Miro-Canturri A, Parra-Millan R, Pachon-Ibanez ME, Jimenez-Mejias ME, Pachon J, Smani Y. The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant Gram-negative bacilli. Int J Antimicrob Agents. 2019;54:507–12. https://doi.org/10.1016/j.ijantimicag.2019.07.006.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Wang X, Li X, Dong L, Hu X, Nie T, Lu Y, Lu X, Pang J, Li G, et al. Synergistic effect of colistin combined with PFK-158 against colistin-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63. https://doi.org/10.1128/AAC.00271-19.

  28. Wahdan SA, Azab SS, Elsherbiny DA, El-Demerdash E. Piceatannol protects against cisplatin nephrotoxicity via activation of Nrf2/HO-1 pathway and hindering NF-kappaB inflammatory cascade. Naunyn Schmiedebergs Arch Pharm. 2019;392:1331–45. https://doi.org/10.1007/s00210-019-01673-8.

    Article  CAS  Google Scholar 

  29. Breuss JM, Atanasov AG, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20071523.

  30. Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules. 2021;26. https://doi.org/10.3390/molecules26010229.

  31. Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G, Kunnumakkara AB. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharm Res. 2020;153:104635. https://doi.org/10.1016/j.phrs.2020.104635.

    Article  CAS  Google Scholar 

  32. Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharm. 2012;3:141. https://doi.org/10.3389/fphar.2012.00141.

    Article  CAS  Google Scholar 

  33. Wang L, Zhang Y, Lin Y, Cao J, Xu C, Chen L, Wang Y, Sun Y, Zheng X, Liu Y, et al. Resveratrol increases sensitivity of clinical colistin-resistant pseudomonas aeruginosa to colistin in vitro and in vivo. Microbiol Spectr. 2023;11:e199222. https://doi.org/10.1128/spectrum.01992-22.

    Article  CAS  Google Scholar 

  34. Liu L, Yu J, Shen X, Cao X, Zhan Q, Guo Y, Yu F. Resveratrol enhances the antimicrobial effect of polymyxin B on Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance. BMC Microbiol. 2020;20:306. https://doi.org/10.1186/s12866-020-01995-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fukuhara K, Miyata N. Resveratrol as a new type of DNA-cleaving agent. Bioorg Med Chem Lett. 1998;8:3187–92. https://doi.org/10.1016/s0960-894x(98)00585-x.

    Article  CAS  PubMed  Google Scholar 

  36. Hwang D, Lim YH. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci Rep. 2015;5:10029. https://doi.org/10.1038/srep10029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharm Rev. 2003;55:27–55. https://doi.org/10.1124/pr.55.1.2.

    Article  CAS  PubMed  Google Scholar 

  38. Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HL. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol. 2011;82:145–63. https://doi.org/10.1111/j.1365-2958.2011.07804.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (32200159, 82272352, 82130065).

Author information

Authors and Affiliations

Authors

Contributions

JY, ZF, and ZL designed the experiments. ZF, ZL, TF, YF, BD, XC, RZ, and HZ performed the experiments. The other authors analyzed the results. ZF and ZL wrote the manuscript. JY and ZF revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jing Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

We declared that all animal experiments complied with the US and Chinese national guidelines for the use of animals in research. The protocol was approved by the Capital Institute of Pediatrics (permission number DWLL2023011).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Li, Z., Fu, T. et al. Inhibition of the ATP synthase increases sensitivity of Escherichia coli carrying mcr-1 to polymyxin B. J Antibiot (2024). https://doi.org/10.1038/s41429-024-00753-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-024-00753-z

Search

Quick links