Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antidermatophyte activity and PK/PD of ME1111 in a guinea pig model of tinea corporis

Abstract

Onychomycosis, a superficial fungal infection of the nails, is prevalent in many areas of the world. Topical agents for onychomycosis need to reach the subungual layer and nail bed to exert antifungal activity in the presence of keratin, the major component of the nail. It is difficult to evaluate the efficacy and pharmacodynamics of topical agents for onychomycosis in a non-clinical evaluation system. No consistent animal model has yet been established to predict the efficacy of topical agents for onychomycosis. In this study, we evaluated the pharmacokinetics and pharmacodynamics of ME1111 in a guinea pig model of tinea corporis designed to predict the efficacy of topical medication for onychomycosis in the vicinity of the nail bed. Trichophyton mentagrophytes TIMM1189 was infected on the back skin of guinea pigs, and ME1111 solution (5%, 10%, or 15%) was administered topically, once daily for 14 consecutive days. Following the completion of dosing, segments of skin from the site of infection were excised and cultured. The concentration of ME1111 in the back skin of guinea pigs increased with formulation concentration and correlated with mycological efficacy. We revealed the concentration required for ME1111 to be effective at the site of infection. Further analysis is needed to predict the efficacy of topical agents for onychomycosis by analyzing the relationship between PK/PD around the nail bed and factors such as subungual penetration and permeability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, et al. A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43:641–8.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta AK, Jain HC, Lynde CW, Macdonald P, Cooper EA, Summerbell RC. Prevalence and epidemiology of onychomycosis in patients visiting physicians’ offices: a multicenter Canadian survey of 15,000 patients. J Am Acad Dermatol. 2000;43:244–8.

    Article  CAS  PubMed  Google Scholar 

  3. Heikkilä H, Stubb S. The prevalence of onychomycosis in Finland. Br J Dermatol. 1995;133:699–703.

    Article  PubMed  Google Scholar 

  4. Ghannoum M, Isham N. Fungal Nail Infections (Onychomycosis): A never-ending story? PLoS Pathog. 2014;10:e1004105.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elewski BE. Onychomycosis. Treatment, quality of life, and economic issues. Am J Clin Dermatol. 2000;1:19–26.

    Article  CAS  PubMed  Google Scholar 

  6. Alley MRK, Baker SJ, Beutner KR, Plattner J. Recent progress on the topical therapy of onychomycosis. Expert Opin Investig Drugs. 2007;16:157–67.

    Article  CAS  PubMed  Google Scholar 

  7. Tabata Y, Takei-Masuda N, Kubota, Takahata S, Ohyama M, Kaneda K, et al. Characterization of antifungal activity and nail penetration of ME1111, a new antifungal agent for topical treatment of onychomycosis. Antimicrob Agents Cheomother. 2015;60:1035–9.

    Article  Google Scholar 

  8. Ghannoum M, Isham N, Long L. In vitro antifungal activity of ME1111, a new topical agent for onychomycosis, against clinical isolates of dermatophytes. Antimicrob Agents Chemother. 2015;59:5154–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubota-Ishida N, Takei-Masuda N, Kaneda K, Nagira Y, Chikada T, Nomoto M, et al. In vitro human onychopharmacokinetic and pharmacodynamic analyses of ME1111, a new topical agent for onychomycosis. Antimicrob Agents Chemother. 2017;62:e00779–17.

    PubMed  PubMed Central  Google Scholar 

  10. Takei-Masuda N, Nagira Y, Kaneda K, Chikada T, Nomoto M, Tabata Y, et al. Potent antifungal activity of ME1111 against Trichophyton species in the presence of keratin [abstract F-742] 55th Intersci Conf Antimicrob Agents Chemother 2015.

  11. Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem. 2003;72:77–109.

    Article  CAS  PubMed  Google Scholar 

  12. Takahata S, Kubota N, Takei-Masuda N, Yamada T, Maeda M, Alshahmi MM, et al. Mechanism of action of ME1111, a novel antifungal agent for topical treatment of onychomycosis. Antimicrob Agents Chemother. 2016;60:873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hui X, Jung EC, Zhu H, Maibach H. Antifungal ME1111 in vitro human onychopharmacokinetics. Drug Dev Ind Pharm. 2017;43:22–9.

    Article  CAS  PubMed  Google Scholar 

  14. Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236:1–26.

    Article  CAS  PubMed  Google Scholar 

  15. Sugiura K, Sugimoto N, Hosaka S, Katafuchi-Nagashima M, Arakawa Y, Tatsumi Y, et al. The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob Agents Cheomother. 2014;58:3837–42.

    Article  Google Scholar 

  16. Pollak RA, Siu WJJ, Tatsumi Y, Pillai R. Efinaconazole topical solution, 10%: factors contributing to onychomycosis success. J Fungi (Basel). 2015;1:107–14.

    Article  PubMed  Google Scholar 

  17. Tatsumi Y, Yokoo M, Senda H, Kakehi K. Therapeutic efficacy of topically applied KP-103 against experimental tinea unguium in guinea pigs in comparison with amorolfine and terbinafine. Antimicrob Agents Chemother. 2002;46:3797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasegawa N, Shibuya K. Development of an Animal Model of Onychomycosis in Guinea Pigs. Med Mycol J. 2020;61:55–60.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura A, Hirakawa S, Nagai H, Inagaki K. A comparative study between two antifungal agents, Luliconazole and Efinaconazole, of their preventive effects in a Trichophyton-infected guinea pig onychomycosis model. Med Mycol. 2021;3:289–95.

    Article  Google Scholar 

  20. Masumoto A, Sugiura K, Matsuda Y, Tachibana H, Tatsumi Y. Evaluation of topical antifungals using a new predictive animal model for efficacy against severe tinea unguium: a comparison of efinaconazole and luliconazole. Mycopathologia. 2022;187:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimamura T, Kubota N, Nagasaka S, Suzuki T, Mukai H, Shibuya K. Establishment of a novel model of onychomycosis in rabbits for evaluation of antifungal agents. Antimicrob Agents Chemother. 2011;55:3150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coronado D, Merchant T, Chanda S, Zane LT. In vitro nail penetration and antifungal activity of tavaborole, a boron-based pharmaceutical. J Drugs Dermatol. 2015;14:609–14.

    CAS  PubMed  Google Scholar 

  23. Matsuda Y, Sugiura K, Hashimoto T, Ueda A, Konno Y, Tatsumi Y. Efficacy coefficients determined using nail permeability and antifungal activity in keratin-containing media are useful for predicting clinical efficacies of topical drugs for onychomycosis. PLoS One. 2016;11:e0159661.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cashman MW, Sloan SB. Nutrition and nail disease. Clin Dermatol. 2010;28:420–5.

    Article  PubMed  Google Scholar 

  25. Winckle G, Fieldson GT Compositions and methods for treating diseases of the nail. United states patent application publication. US 2014/0228403 A1.

  26. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed. approved standard. (M38-A2) Wayne PA: Clinical and Laboratory Standards Institute; 2008.

  27. Niwano Y, Tabuchi T, Kanai K, Hamaguchi H, Uchida K, Yamaguchi H. Therapeutic efficacy of lanoconazole ointment in guinea pig model of tinea corporis, a comparative study with ointment and cream preparations. Jpn J Antibiot. 1995;48:150–4.

    CAS  PubMed  Google Scholar 

  28. Lepak AJ, Andes DR. Antifungal pharmacokinetics and pharmacodynamics. Cold Spring Harb Perspect Med. 2014;55:a019653.

    Google Scholar 

  29. Elefanti A, Mouton JW, Krompa K, Al-Saigh R, Verweij PE, Zerva L, et al. Inhibitory and fungicidal effects of antifungal drugs against Aspergillus species in the presence of serum. Antimicrob Agents Chemother. 2013;57:1625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pressiat C, Ait-Ammar N, Daniel M, Hulin A, Botterel F, Levesque E. Pharmacokinetics/Pharmacodynamics of Caspofungin in Plasma and Peritoneal Fluid of Liver Transplant Recipients. Antimicrob Agents Chemother. 2022;66:e0118721.

    Article  PubMed  Google Scholar 

  31. Sobue S, Sekiguchi K, Nabeshima T. The pharmacokinetics of oral antifungal drugs and their efficacy against cutaneous mycosis. Nihon Yakurigaku Zasshi. 2005;125:291–5.

    Article  CAS  PubMed  Google Scholar 

  32. Long L, Hager C, Ghannoum M. Evaluation of the efficacy of ME1111 in the topical treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother. 2016;60:2343–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe S. Optimal dosages and cycles of itraconazole pulse therapy for onychomycosis. Jpn J Med Mycol 2004;45:143–7.

    Article  Google Scholar 

  34. Hui X, Shainhouse JZ, Tanojo H, Anigbogu A, Markus G, Maibach HI, et al. Enhanced human nail drug delivery: nail inner drug content assayed by new unique method. J Pharm Sci. 2002;91:189–95.

    Article  CAS  PubMed  Google Scholar 

  35. Hui X, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, et al. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci. 2007;96:2622–31.

    Article  CAS  PubMed  Google Scholar 

  36. Del Rosso JQ, Reece B, Smith K, Miller. Efinaconazole 10% solution: a new topical treatment for onychomycosis: contact sensitization and skin irritation potential. J Clin Aesthet Dermatol. 2013;6:20–4.

    PubMed  PubMed Central  Google Scholar 

  37. Elewski BE, Rich P, Pollak R, Pariser DM, Watanabe S, Senda H, et al. Efinaconazole 10% solution in the treatment of toenail onychomycosis: Two phase III multicenter, randomized, double-blind studies. J Am Acad Dermatol. 2013;68:600–8.

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi H, Uchida K. Once daily administration of terbinafine to guinea-pigs with experimental dermatophytosis. Clin Exp Dermatol. 1989;14:108–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lipner SR, Joseph WS, Vlahovic TC, Scher RK, Rich P, Ghannoum M, et al. Therapeutic recommendations for the treatment of toenail onychomycosis in the US. J Drugs Dermatol. 2021;20:1076–84.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kazue Nagano, Shiro Sakakibara, Ai Yamada, and Toshihiko Takata for their technical assistance with the experiments. This study was supported by Meiji Seika Pharma Co., Ltd. (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Takei-Masuda.

Ethics declarations

Conflict of interest

All authors are employees of Meiji Seika Pharma Co., Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takei-Masuda, N., Nagira, Y., Kubota-Ishida, N. et al. Antidermatophyte activity and PK/PD of ME1111 in a guinea pig model of tinea corporis. J Antibiot (2024). https://doi.org/10.1038/s41429-024-00738-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-024-00738-y

Search

Quick links