Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semi-synthesis and structure-activity relationship study yield antibacterial vicenistatin derivatives with low cytotoxicity

Abstract

Vicenistatin (1) is a 20-membered polyketide macrocyclic antibiotic with potent antimicrobial and cytotoxic activities. In this study, to further explore the potential of 1 as candidates of antibacterial drug development, 4’-N-demethyl vicenistatin (2), a secondary metabolite obtained from the ∆vicG mutant strain of Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010, was utilized as a starting material for modifications of 4’-amino group of vicenistatin. Six new vicenistatin derivatives (38) were semi-synthesized through a concise route of amino modification with various aliphatic and aromatic aldehydes. Our study reveals that the bioactivity of vicenistatin is closely related to amino modification in sugar moiety, which results from the length of alkyl side chain as well as the presence of electron withdrawing/denoting group on the benzene ring. Importantly, compounds 4 with a butyl group and 8 with a 3,5-dihydroxyl-benzyl group at 4’-amino group, respectively, exhibited good antimicrobial activities, with MIC values spanning 0.5–4 μg ml−1 to Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Micrococcus luteus and Bacillus subtilis, with low cytotoxicity. This research promotes the further exploration of structure-activity relationships of vicenistatin and provides new vicenistatin derivatives for development of future anti-infectious agents with reduced cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shindo K, Kamishohara M, Odagawa A, Matsuoka M, Kawai H. Vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic. J Antibiot. 1993;46:1076–81.

    Article  CAS  Google Scholar 

  2. Matsushima Y, Itoh H, Eguchi T, Kakinuma K. Enantioselective and convergent synthesis of the 20-membered lactam aglycon of vicenistatin antitumor antibiotic. J Antibiot. 1998;51:688–91.

    Article  CAS  Google Scholar 

  3. Matsushima Y, Itoh H, Nakayama T, Horiuchi S, Eguchi T, Kakinuma K. Enantioselective total synthesis of vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic. J Chem Soc, Perkin Trans 1. 2002;7:949–58.

    Article  Google Scholar 

  4. Fukuda H, Nakamura S, Eguchi T, Iwabuchi Y, Kanoh N. Concise total synthesis of vicenistatin. Synlett. 2010;17:2589–92.

    Google Scholar 

  5. Fukuda H, Nishiyama Y, Nakamura S, Ohno Y, Eguchi T, Iwabuchi Y, Usui T, Kanoh N. Synthesis and structure–activity relationship of vicenistatin, a cytotoxic 20‐membered macrolactam glycoside. Chem Asian J. 2012;7:2872–81.

    Article  CAS  PubMed  Google Scholar 

  6. Nishiyama Y, Ohmichi T, Kazami S, Iwasaki H, Mano K, Nagumo Y, Kudo F, Ichikawa S, Iwabuchi Y, Kanoh N, Eguchi T, Osada H, Usui T. Vicenistatin induces early endosome-derived vacuole formation in mammalian cells. Biosci Biotech Bioch. 2016;80:902–10.

    Article  CAS  Google Scholar 

  7. Ogasawara Y, Katayama K, Minami A, Otsuka M, Eguchi T, Kakinuma K. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem Biol. 2004;11:79–86.

    CAS  PubMed  Google Scholar 

  8. Ogasawara Y, Kakinuma K, Eguchi T. Involvement of glutamate mutase in the biosynthesis of the unique starter unit of the macrolactam polyketide antibiotic vicenistatin. J Antibiot. 2005;58:468–472.

    Article  CAS  Google Scholar 

  9. Minami A, Uchida R, Eguchi T, Kakinuma K. Enzymatic approach to unnatural glycosides with diverse aglycon scaffolds using glycosyltransferase VinC. J Am Chem Soc. 2005;127:6148–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kudo F, Kitayama T, Kakinuma K, Eguchib T. Macrolactam formation catalyzed by the thioesterase domain of vicenistatin polyketide synthase. Tetrahedron Lett. 2006;47:1529–32.

    Article  CAS  Google Scholar 

  11. Minami A, Eguchi T. Substrate flexibility of vicenisaminyltransferase VinC involved in the biosynthesis of vicenistatin. J Am Chem Soc. 2007;129:5102–7.

    Article  CAS  PubMed  Google Scholar 

  12. Shinohara Y, Kudo F, Eguchi T. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotic. J Am Chem Soc. 2011;133:18134–7.

    Article  CAS  PubMed  Google Scholar 

  13. Shinohara Y, Miyanaga A, Kudo F, Eguchi T. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. FEBS Lett. 2014;588:995–1000.

    Article  CAS  PubMed  Google Scholar 

  14. Miyanaga A, Ciesak J, Shinohara Y, Kudo F, Eguchi T. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism. J Biol Chem. 2014;289:31448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miyanaga A, Iwasawa S, Shinohara Y, Kudo F, Eguchi T. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. Proc Natl Acad Sci USA. 2016;113:1802–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chisuga T, Miyanaga A, Eguchi T. Protein‐protein recognition involved in the intermodular transacylation reaction in modular polyketide synthase in the biosynthesis of vicenistatin. ChemBioChem. 2022;23:e202200200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyanaga A, Kawada K, Chisuga T, Kudo F, Eguchi T. Structural basis of transient interactions of acyltransferase vink with the loading acyl carrier protein of the vicenistatin modular polyketide synthase. Biochemistry. 2023;62:17–21.

    Article  CAS  PubMed  Google Scholar 

  18. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    Article  CAS  Google Scholar 

  19. Liang Z, Li J, Ling C, Xu R, Yi X, Ju J, Li Q. Characterization of the aminosugar biosynthetic and regulatory genes of vicenistatin in monodonata labio-associated streptomyces parvus SCSIO Mla-L010. J Nat Prod. 2022;85:256–63.

    Article  CAS  PubMed  Google Scholar 

  20. Salta J, Reissig HU. Synthesis of divalent carbohydrate mimetics by reductive amination with enantiopure 1, 2-Oxazines as precursors. Synthesis. 2015;47:1893–98.

    Article  CAS  Google Scholar 

  21. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 8th ed.; Clinical and Laboratory Standards Institute: Villanova, PA; M07-A8.(2009).

  22. Li W, Shi C, Wu X, Zhang Y, Liu H, Wang X, Huang C, Liang L, Liu Y. Light activation of iridium (III) complexes driving ROS production and DNA damage enhances anticancer activity in A549 cells. J Inorg Biochem. 2022;236:111977.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (42006103), Guangzhou Basic and Applied Basic Research Foundation (202201010336; 202201010519; 2023A04J1162), the Key-Area Research and Development Program of Guangdong Province (2020B1111030005), Open Project of Guangdong Key Laboratory of Marine Materia Medica (LMM2021-6), the Natural Science Foundation of Guangdong (2021B1515020036), the Nansha District Science and Technology Plan Project (NSJL202102), and Guangdong Provincial University Young Innovative Talents Project (2021KQNCX036). We acknowledge Professor Minggui Wang from Huashan Hospital, Professors Xiaoxiao Liu and Bing Gu from Guangdong Provincial People’s Hospital for the gifts of pathogenic bacteria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglian Li or Jianhua Ju.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, Z., Shi, C. et al. Semi-synthesis and structure-activity relationship study yield antibacterial vicenistatin derivatives with low cytotoxicity. J Antibiot 77, 221–227 (2024). https://doi.org/10.1038/s41429-023-00701-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00701-3

Search

Quick links