Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emblestatin: a new peptide antibiotic from Embleya scabrispora K20-0267


A new peptide, emblestatin (1), was discovered from a culture broth of Embleya scabrispora K20-0267. This strain was isolated from soil using an agar medium containing lysozyme. Based on NMR and mass spectrometric analyses, 1 consists of 2-(2-hydroxyphenyl)-2-oxazoline, β-alanine, glutamine, Nα-methyl-Nω-hydroxyornithine and 3-amino-1-hydroxy-2-piperidone moieties. Further analysis using the advanced Marfey’s method revealed that all amino acids with the stereogenic α-carbon in 1 had the l configuration. Compound 1 exhibited iron chelating activity and weak antibacterial activity against Proteus vulgaris and Staphylococcus aureus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2


  1. Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol. 2013;97:9291–321.

    Article  CAS  PubMed  Google Scholar 

  2. Wei B, Du AQ, Zhou ZY, Lai C, Yu WC, Yu JB, et al. An atlas of bacterial secondary metabolite biosynthesis gene clusters. Environ Microbiol. 2021;23:6981–92.

    Article  CAS  PubMed  Google Scholar 

  3. Kikuchi Y, Kawashima M, Iwatsuki M, Kimishima A, Tsutsumi H, Asami Y, et al. Comprehensive analysis of biosynthetic gene clusters in bacteria and discovery of Tumebacillus as a potential producer of natural products. J Antibiot. 2023;76:316–23.

    Article  CAS  Google Scholar 

  4. Nakashima T, Okuyama R, Kamiya Y, Matsumoto A, Iwatsuki M, Inahashi Y, et al. Trehangelins A, B and C, novel photo-oxidative hemolysis inhibitors produced by an endophytic actinomycete, Polymorphospora rubra K07-0510. J Antibiot. 2013;66:311–7.

    Article  CAS  Google Scholar 

  5. Inahashi Y, Iwatsuki M, Ishiyama A, Matsumoto A, Hirose T, Oshita J, et al. Actinoallolides A–E, new anti-trypanosomal macrolides, produced by an endophytic actinomycete, Actinoallomurus fulvus MK10-036. Org Lett. 2015;17:864–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kimura T, Inahashi Y, Matsuo H, Suga T, Iwatsuki M, Shiomi K, et al. Pyrizomicin A and B: structure and bioactivity of new thiazolyl pyridines from Lechevalieria aerocolonigenes K10-0216. J Antibiot. 2018;71:606–8.

    Article  CAS  Google Scholar 

  7. Suga T, Kimura T, Inahashi Y, Iwatsuki M, Nonaka K, Také A, et al. Hamuramicins A and B, 22-membered macrolides, produced by an endophytic actinomycete Allostreptomyces sp. K12-0794. J Antibiot. 2018;71:619–25.

    Article  CAS  Google Scholar 

  8. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol. 1965;13:236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article  CAS  Google Scholar 

  10. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–30.

    Article  CAS  PubMed  Google Scholar 

  11. Inahashi Y, Matsumoto A, Danbara H, Ōmura S, Takahashi Y. Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol. 2010;60:2652–8.

    Article  CAS  PubMed  Google Scholar 

  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  13. Gouy M, Guindon S, Gascuel O. SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.

    Article  CAS  PubMed  Google Scholar 

  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64:711–3.

    Article  CAS  PubMed  Google Scholar 

  16. Tyler AR, Mosaei H, Morton S, Waddell PG, Wills C, McFarlane W, et al. Structural reassignment and absolute stereochemistry of madurastatin C1 (MBJ-0034) and the related aziridine siderophores: madurastatins A1, B1, and MBJ-0035. J Nat Prod. 2017;80:1558–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harada KI, Fujii K, Hayashi K, Suzuki M, Ikai Y, Oka H. Application of d,l-FDLA derivatization to determination of absolute configuration of constituent amino acids in peptide by advanced Marfey’s method. Tetrahedron Lett. 1996;37:3001–4.

    Article  CAS  Google Scholar 

  18. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol. 2018;9:2007.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ping X, Takahashi Y, Seino A, Iwai Y, Ōmura S. Streptomyces scabrisporus sp. nov. Int J Syst Evol Microbiol. 2004;54:577–81.

    Article  PubMed  Google Scholar 

  20. Ōmura S, Nakagawa A, Shibata K, Sano H. The structure of hitachimycin, a novel macrocyclic lactam involving β-phenylalanine. Tetrahedron Lett. 1982;23:4713–6.

    Article  Google Scholar 

  21. Komaki H, Hosoyama A, Kimura A, Ichikawa N, Igarashi Y, Tamura T. Classification of ‘Streptomyces hyalinum’ Hamada and Yokoyama as Embleya hyalina sp. nov., the second species in the genus Embleya, and emendation of the genus Embleya. Int J Syst Evol Microbiol. 2020;70:1591–5.

    Article  CAS  PubMed  Google Scholar 

  22. Naganawa H, Wakashiro T, Yagi A, Kondo S, Takita T. Deoxynybomycin from a streptomyces. J Antibiot. 1970;23:365–8.

    Article  CAS  Google Scholar 

  23. Rodríguez-Peña K, Gómez-Román MP, Macías-Rubalcava ML, Rocha-Zavaleta L, Rodríguez-Sanoja R, Sánchez S. Bioinformatic comparison of three Embleya species and description of steffimycins production by Embleya sp. NF3. Appl Microbiol Biotechnol. 2022;106:3173–90.

    Article  PubMed  Google Scholar 

  24. Hashizume H, Harada S, Sawa R, Iijima K, Kubota Y, Shibuya Y, et al. New chloptosins B and C from an Embleya strain exhibit synergistic activity against methicillin-resistant Staphylococcus aureus when combined with co-producing compound L-156,602. J Antibiot. 2021;74:80–5.

    Article  Google Scholar 

Download references


We are grateful to Distinguished Emeritus Professor Satoshi Ōmura (Kitasato University) for his helpful support and valuable suggestions. This study was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan under Grant Number 19H05685 and the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from the Japan Agency for Medical Research & Development (AMED) under Grant Numbers JP19am0101096 (Phase I) and JP22ama121035 (Phase II).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yuki Inahashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awano, Y., Tsutsumi, H., Kikuchi, Y. et al. Emblestatin: a new peptide antibiotic from Embleya scabrispora K20-0267. J Antibiot 76, 592–597 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links