Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Avidumicin, a novel cyclic bacteriocin, produced by Cutibacterium avidum shows anti-Cutibacterium acnes activity

Abstract

The prevalence of antimicrobial-resistant Cutibacterium acnes in acne patients has increased owing to inappropriate antimicrobial use. Commensal skin bacteria may play an important role in maintaining the balance of the skin microbiome by producing antimicrobial substances. Inhibition of Cu. acnes overgrowth can prevent the development and exacerbation of acne vulgaris. Here, we evaluated skin bacteria with anti-Cu. acnes activity. Growth inhibition activity against Cu. acnes was tested using 122 strains isolated from the skin of healthy volunteers and acne patients. Comparative genomic analysis of the bacterium with or without anti-Cu. acnes activity was conducted. The anti-Cu. acnes activity was confirmed by cloning an identified gene cluster and chemically synthesized peptides. Cu. avidum ATCC25577 and 89.7% of the Cu. avidum clinical isolates (26/29 strains) inhibited Cu. acnes growth. The growth inhibition activity was also found against other Cutibacterium, Lactiplantibacillus, and Corynebacterium species, but not against Staphylococcus species. The genome sequence of Cu. avidum showed a gene cluster encoding a novel bacteriocin named avidumicin. The precursor protein encoded by avdA undergoes post-translational modifications, supposedly becoming a circular bacteriocin. The anti-Cu. acnes activity of avidumicin was confirmed by Lactococcus lactis MG1363 carrying avdA. The C-terminal region of the avidumicin may be essential for anti-Cu. acnes activity. A commensal skin bacterium, Cu. avidum, producing avidumicin has anti-Cu. acnes activity. Therefore, avidumicin is a novel cyclic bacteriocin with a narrow antimicrobial spectrum. These findings suggest that Cu. avidum and avidumicin represent potential alternative agents in antimicrobial therapy for acne vulgaris.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakase K, Aoki S, Sei S, Fukumoto S, Horiuchi Y, Yasuda T, et al. Characterization of acne patients carrying clindamycin-resistant Cutibacterium acnes: A Japanese multicenter study. J Dermatol. 2020;47:863–9.

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi N, Akamatsu H, Iwatsuki K, Shimada-Omori R, Kaminaka C, Kurokawa I, et al. Japanese dermatological association guidelines: Guidelines for the treatment of acne vulgaris 2017. J Dermatol. 2018;45:898–935.

    Article  PubMed  Google Scholar 

  3. Nakase K, Hayashi N, Akiyama Y, Aoki S, Noguchi N. Antimicrobial susceptibility and phylogenetic analysis of Propionibacterium acnes isolated from acne patients in Japan between 2013 and 2015. J Dermatol. 2017;44:1248–54.

    Article  CAS  PubMed  Google Scholar 

  4. Sardana K, Gupta T, Garg VK, Ghunawat S. Antibiotic resistance to Propionobacterium acnes: worldwide scenario, diagnosis and management. Expert Rev Anti Infect Ther. 2015;13:883–96.

    Article  CAS  PubMed  Google Scholar 

  5. Nakase K, Yoshida A, Saita H, Hayashi N, Nishijima S, Nakaminami H, et al. Relationship between quinolone use and resistance of Staphylococcus epidermidis in patients with acne vulgaris. J Dermatol. 2019;46:782–6.

    Article  CAS  PubMed  Google Scholar 

  6. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21:660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc. 2001;6:170–4.

    Article  CAS  PubMed  Google Scholar 

  8. O’Sullivan JN, Rea MC, O’Connor PM, Hill C, Ross RP. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol. 2019;95:fiy241.

    PubMed  Google Scholar 

  9. Khalfallah G, Gartzen R, Moller M, Heine E, Lutticken R. A new approach to harness probiotics against common bacterial skin pathogens: Towards living antimicrobials. Probiot Antimicrob Proteins. 2021;13:1557–71.

    Article  CAS  Google Scholar 

  10. Gallo RL, Murakami M, Ohtake T, Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002;110:823–31.

    Article  CAS  PubMed  Google Scholar 

  11. Khelissa S, Chihib NE, Gharsallaoui A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch Microbiol. 2021;203:465–80.

    Article  CAS  PubMed  Google Scholar 

  12. Gotz F, Perconti S, Popella P, Werner R, Schlag M. Epidermin and gallidermin: Staphylococcal lantibiotics. Int J Med Microbiol. 2014;304:63–71.

    Article  PubMed  Google Scholar 

  13. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B. Skin microbiota: microbial community structure and its potential association with health and disease. Infect Genet Evol. 2011;11:839–48.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nakase K, Nakaminami H, Takenaka Y, Hayashi N, Kawashima M, Noguchi N. Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan. J Med Microbiol. 2014;63:721–8.

    Article  CAS  PubMed  Google Scholar 

  16. Aoki S, Nakase K, Hayashi N, Noguchi N. Transconjugation of erm(X) conferring high-level resistance of clindamycin for Cutibacterium acnes. J Med Microbiol. 2019;68:26–30.

    Article  CAS  PubMed  Google Scholar 

  17. Nakase K, Okamoto Y, Aoki S, Noguchi N. Long-term administration of oral macrolides for acne treatment increases macrolide-resistant Propionibacterium acnes. J Dermatol. 2018;45:340–3.

    Article  CAS  PubMed  Google Scholar 

  18. Perez RH, Sugino H, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V, et al. Mutations near the cleavage site of enterocin NKR-5-3B prepeptide reveal new insights into its biosynthesis. Microbiology. 2017;163:431–41.

    Article  CAS  PubMed  Google Scholar 

  19. Grande Burgos MJ, Pulido RP, Del Carmen Lopez Aguayo M, Galvez A, Lucas R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int J Mol Sci. 2014;15:22706–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology. 2007;153:1619–30.

    Article  CAS  PubMed  Google Scholar 

  21. Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, et al. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol. 2011;77:8164–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, et al. Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol. 2008;74:4756–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, et al. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol. 2009;75:1552–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol. 2003;69:1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM. Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol. 2003;49:763–73.

    Article  CAS  PubMed  Google Scholar 

  26. Kawai Y, Kemperman R, Kok J, Saito T. The circular bacteriocins gassericin A and circularin A. Curr Protein Pept Sci. 2004;5:393–8.

    Article  CAS  PubMed  Google Scholar 

  27. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;196:1842–52.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Potter A, Ceotto H, Coelho MLV, Guimaraes AJ, Bastos M. The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus. Microbiology. 2014;160:917–28.

    Article  CAS  PubMed  Google Scholar 

  29. Golneshin A, Gor MC, Williamson N, Vezina B, Van TTH, May BK, et al. Discovery and characterisation of circular bacteriocin plantacyclin B21AG from Lactiplantibacillus plantarum B21. Heliyon. 2020;6:e04715.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koizumi J, Nakase K, Hayashi N, Nasu Y, Hirai Y, Nakaminami H. Multidrug-resistant Cutibacterium avidum isolated from patients with acne vulgaris and other infections. J Glob Antimicrob Resist. 2022;28:151–7.

    Article  CAS  PubMed  Google Scholar 

  31. van de Guchte M, van der Vossen JM, Kok J, Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989;55:224–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morgan-Kiss RM, Cronan JE. The Lactococcus lactis FabF fatty acid synthetic enzyme can functionally replace both the FabB and FabF proteins of Escherichia coli and the FabH protein of Lactococcus lactis. Arch Microbiol. 2008;190:427–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linares DM, Kok J, Poolman B. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol. 2010;192:5806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2007;51:3726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakase K, Nakaminami H, Toda Y, Noguchi N. Determination of the mutant prevention concentration and the mutant selection window of topical antimicrobial agents against Propionibacterium acnes. Chemotherapy. 2017;62:94–9.

    Article  CAS  PubMed  Google Scholar 

  36. Maqueda M, Sanchez-Hidalgo M, Fernandez M, Montalban-Lopez M, Valdivia E, Martinez-Bueno M. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev. 2008;32:2–22.

    Article  CAS  PubMed  Google Scholar 

  37. Barnard E, Shi B, Kang D, Craft N, Li H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6:39491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Da F, Joo HS, Cheung GYC, Villaruz AE, Rohde H, Luo X, et al. Phenol-soluble modulin toxins of Staphylococcus haemolyticus. Front Cell Infect Microbiol. 2017;7:206.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rozalska M, Derczynska A, Maszewska A. Synergistic hemolysins of coagulase-negative staphylococci (CoNS). Acta Biochim Pol. 2015;62:757–64.

    Article  CAS  PubMed  Google Scholar 

  40. Luty RS, Fadil AG, Najm JM, Abduljabbar HH, Kashmar SAA. Uropathogens antibiotic susceptibility as an indicator for the empirical therapy used for urinary tract infections: a retrospective observational study. Iran J Microbiol. 2020;12:395–403.

    PubMed  PubMed Central  Google Scholar 

  41. McGinley KJ, Webster GF, Leyden JJ. Regional variations of cutaneous propionibacteria. Appl Environ Microbiol. 1978;35:62–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, et al. Bacteriocins: Potential for Human Health. Oxid Med Cell Longev. 2021;2021:5518825.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zainal Baharin NH, Khairil Mokhtar NF, Mohd Desa MN, Gopalsamy B, Mohd Zaki NN, Yuswan MH, et al. The characteristics and roles of antimicrobial peptides as potential treatment for antibiotic-resistant pathogens: a review. PeerJ. 2021;9:e12193.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Micro Cell Fact. 2014;13:S3.

    Article  Google Scholar 

  45. Ben-Shushan G, Zakin V, Gollop N. Two different propionicins produced by Propionibacterium thoenii P-127. Peptides. 2003;24:1733–40.

    Article  CAS  PubMed  Google Scholar 

  46. Ben Braiek O, Smaoui S. Enterococci: between emerging pathogens and potential probiotics. Biomed Res. Int. 2019;2019:5938210.

    PubMed  PubMed Central  Google Scholar 

  47. Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1–20.

    Article  CAS  PubMed  Google Scholar 

  48. Kong W, Lu T. Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest. ACS Synth Biol. 2014;3:439–45.

    Article  CAS  PubMed  Google Scholar 

  49. Renye JA Jr, Somkuti GA. Nisin-induced expression of pediocin in dairy lactic acid bacteria. J Appl Microbiol. 2010;108:2142–51.

    CAS  PubMed  Google Scholar 

  50. Perez RH, Ishibashi N, Inoue T, Himeno K, Masuda Y, Sawa N, et al. Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J Bacteriol. 2016;198:291–300.

    Article  CAS  PubMed  Google Scholar 

  51. Conlan BF, Gillon AD, Craik DJ, Anderson MA. Circular proteins and mechanisms of cyclization. Biopolymers. 2010;94:573–83.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng S, Sonomoto K. Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Appl Microbiol Biotechnol. 2018;102:4243–53.

    Article  CAS  PubMed  Google Scholar 

  53. Martinez-Bueno M, Valdivia E, Galvez A, Coyette J, Maqueda M. Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol Microbiol. 1998;27:347–58.

    Article  CAS  PubMed  Google Scholar 

  54. Borrero J, Kelly E, O’Connor PM, Kelleher P, Scully C, Cotter PD, et al. Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: purification, characterization, and heterologous production. Appl Environ Microbiol. 2018;84:e01801–17.

    Article  PubMed  Google Scholar 

  55. Major D, Flanzbaum L, Lussier L, Davies C, Caldo KMP, Acedo JZ. Transporter protein-guided genome mining for head-to-tail cyclized bacteriocins. Molecules. 2021;26:7218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol. 2014;80:6854–62.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Flaherty RA, Freed SD, Lee SW. The wide world of ribosomally encoded bacterial peptides. PLoS Pathog. 2014;10:e1004221.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abengozar MA, Cebrian R, Saugar JM, Garate T, Valdivia E, Martinez-Bueno M, et al. Enterocin AS-48 as evidence for the use of bacteriocins as new leishmanicidal agents. Antimicrob Agents Chemother. 2017;61:e02288–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr Jan Kok and Dr Harma Karsens for kindly providing Lactococcus lactis MG1363 and NZ9000 and their shuttle vectors pMG36c and pMG36e. We would like to thank Dr Konno for suggesting and trying isolation of avidumicin. We are very appreciative of the kindness suggestion from Dr Takeshi Zendo. We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by JST, SPRING Grant Number JPMJSP2134, Japan (JK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemasa Nakaminami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koizumi, J., Nakase, K., Noguchi, N. et al. Avidumicin, a novel cyclic bacteriocin, produced by Cutibacterium avidum shows anti-Cutibacterium acnes activity. J Antibiot 76, 511–521 (2023). https://doi.org/10.1038/s41429-023-00635-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00635-w

Search

Quick links