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Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly
attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to
revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review
continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule
antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are
described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage
clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from
2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III
and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage
trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the
promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans
to address late-stage pipeline issues succeed.

Introduction

Antibiotics are the foundation of modern medicine but are
becoming increasingly ineffective due to growing levels of
antimicrobial resistance, threatening global health. The
adverse impact of drug-resistant infections is highlighted by
a seminal analysis of the global burden of bacterial anti-
microbial resistance in 2019, with 1.27 million deaths
directly attributed to, and 4.9 million deaths associated with,
resistant bacteria [1]. The development of new antibiotics,
particularly new chemotypes or classes that can overcome
existing resistance mechanisms, has been hindered by a
failure of the healthcare system marketplace to adequately
recognize and compensate for these products [2–4]. In

addition to improved generic antibiotic sales, branded
antibiotic prices have fallen since 2001 [5], aggravating the
economic challenges. Recognition of the antibiotic crisis
has led to the establishment of targeted funding initiatives
for antibiotic development such as the Combating
Antibiotic-Resistant Bacteria Biopharmaceutical Accel-
erator (CARB-X) [6], INCATE [7], REPAIR Impact Fund
[8], and the AMR Action Fund [9, 10], testing of new
incentives to reimburse pharmaceutical companies such as a
subscription ‘Netflix’ model [11–14], and legislative
initiatives such as the PASTEUR (The Pioneering Anti-
microbial Subscriptions To End Up surging Resistance) Act
in the United States [15, 16]. There has also been an
increase in the number of “non-traditional” antibacterials
[17–21] being actively evaluated in clinical trials [21, 22].
Non-traditional antibacterials can be small molecules,
monoclonal antibodies (mAbs), proteins or live biother-
apeutics such as bacteria and bacteriophages that primarily
affect bacteria growth or virulence indirectly with varying
mechanisms such as toxin binding, cell adherence reduc-
tion, inhibition of antivirulence targets and drug resistance
modification [21].

To assess whether these activities are improving the
status quo, we have monitored antibacterial drug develop-
ment since 2011 with reviews published in 2019 [23], 2015
[24], 2013 [25] and 2011 [26]. Complementary reviews
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with different approaches and analyses (but often with few
or no chemical structures) are available. The Pew Trusts
developed an online pipeline tracker that allows the visua-
lization of changes in the pipeline from 2014–2020 [27], but
their antibiotic resistance project was discontinued in
December 2021 [28]. In 2022, the WHO published a report
on antibacterial agents in both preclinical and clinical
development in 2021 [22] and a journal article in 2022 [21].
The WHO also recently reviewed the preclinical and clin-
ical antibacterial vaccine pipeline [29]. A 2021 review cri-
tically analyzed why compounds with Gram-negative (G-
ve) activity have fallen out of the pipeline over the past
decade [30], while two 2020 reviews covered both the
clinical [31] and preclinical [32] antibacterial pipelines,
with a third providing an overview of ‘novel’ antibacterial
agents in various stages of development [33]. Reviews of
patents from 2010–2021 focusing on compounds with
activity against multi-drug resistant (MDR) G-ve bacteria
[34], antibacterial combinations [35], and discovery strate-
gies [36] have also been published.

This review catalogs the small molecule antibacterial
drugs launched since January 2012 in Table 1 and the
yearly number of first-time antibacterial drugs launched by
year since 2000 (Fig. 1, Table S1). International Non-
proprietary Names (INN) are used for compound names
when available. For completeness, Table 2 lists the non-
traditional antibacterial drugs launched during this period.
The new antibacterial drugs approved since the previous
2019 review [23], levonadifloxacin (1) and its prodrug
alalevonadifloxacin (2), and contezolid (4) (Fig. 2), are
analyzed. Consistent with previous reviews in this series
[23–26], small molecule antibacterials (both traditional and
non-traditional) and β-lactamase/β-lactam inhibitor (BL/
BLI) combinations that are being evaluated in phase-I, -II,
or -III clinical trials and under pre-approval regulatory
evaluation as of 31 December 2022 are summarized
(Tables 3–6, Figs. 3–13), along with their development
status, mode of action (MoA), spectra of activity, historical
discovery, and lead compound origin (natural product (NP),
synthetic (S) or protein/mammalian peptides (P)). In the
previous 2019 review [23], one antibody drug conjugate
(ADC), DSTA4637S, was discussed, but its development
has since been halted (Table 7). The clinical trial study
codes, which are predominantly from ClinicalTrials.gov
(NCT), are listed in parentheses for each trial, while non-
registered trials are referenced at least in a Press Release or
peer-reviewed publication. An overview of the drug
development and approval process, on-line clinical trial
databases antibiotic clinical trial categories and abbrevia-
tions can be found in the Supplementary Information.
Prodrugs are grouped together with their active metabolites,
while ongoing trials of antibacterial drugs already approved
anywhere in the world are presented in Table S2.

Compounds where no development activity has been
identified since 2018 are listed in Table 7. The antibacterials
in clinical development have been further analyzed by
phase and source derivation (Fig. 14) and also compared
with data reported in our 2011 [26], 2013 [25], 2015
[24] and 2019 [23] reviews (Fig. 15). An analysis of new
antibacterial pharmacophores (Table 8, Figs. 16 and 17) and
administration routes (Figs. S1 and S2) is also included. The
administration routes in this review are as follows: po (oral),
IV/po (intravenous oral switch); IV (intravenous), IV/topi-
cal (IV and topical), po topical (orally administered
for Clostridioides difficile (formally Clostridium [37])
infections (CDI)), oral, topical and inhalation. The ‘po
topical’ term distinguishes between oral administration to
treat C. difficile infections and the gut microbiome com-
pared to topical administration via creams, sprays, and
eyedrops.

Data in this review were obtained by analyzing the sci-
entific literature and internet sources such as company and
funding organization websites, clinical trial registers, The
Pew Charitable Trusts (Philadelphia, PA, USA) [28] and
World Health Organization (WHO) (Geneva, Switzerland)
pipeline analyses [21, 22] and biotechnology newsletters.
Every effort has been made to ensure the accuracy of
this data; however, it is possible that compounds in the
early stages of clinical development have been overlooked
as there is limited information available in the public
domain.

Antibacterial drugs launched from January
2013 to December 2022

In the last 10 years, 19 new small molecule antibacterial
drugs (eight NP-derived and 11 synthetic-derived) and four
new BL/BLI combinations have been approved (Table 1
and S1, Figs. 1 and 2). Among these 19 antibacterial drugs,
none was first-in-class, with the last being bedaquiline in
2012 (diarylquinoline class), which also was the first new
tuberculosis (TB) drug class since 1963 [38]. Although the
semi-synthetic pleuromutilin derivative lefamulin was
approved in 2019 for systemic use for community-acquired
bacterial pneumonia (CABP) infection, a topically admi-
nistered pleuromutilin, retapamulin, was approved in 2007.
While new classes of G-ve antibacterial drugs have been
approved, new exemplars within existing classes, especially
BL/BLI combinations, also show improved activity profiles
against resistant G-ve bacteria.

Since the 2019 review [24] in this series, two new small
molecule antibacterials (Table 1, Figs. 1 and 2), levonadi-
floxacin (1) (as its prodrug alalevonadifloxacin (2)) and
contezolid (4) were first approved in India and China
respectively.
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Levonadifloxacin (1) (Emrok, WCK-771; IV), which is
the arginine salt of the fluoroquinolone S-(–)-nadifloxacin,
and its alanine prodrug alalevonadifloxacin (2) (Emrok O,
WCK-2349; po) [39–41] were developed by Wockhardt

(Mumbai, Republic of India). Both the IV and oral for-
mulations were approved in January 2020 by the Indian
Central Drugs Standard Control Organization (CDSCO) for
the treatment of acute bacterial skin and skin structure

Table 1 Small molecule antibacterial drugs and β-lactamase inhibitor (BLI) combinations launched from January 2013 to December 2022

Year
approved

Drug namea,b Class Country of first
approval

Therapeutic indication(s) Lead source

Small molecule drugs

2014 delamanid nitroimidazole Europe TB S

2014 dalbavancin glycopeptide USA G+ve SSSI NP

2014 oritavancin glycopeptide USA G+ve SSSI NP

2014 tedizolid phosphate (prodrug) oxazolidinone USA G+ve cSSSI S

2014 nemonoxacin quinolone Taiwan G+ve /G-ve cSSSI S

2014 morinidazolec nitroimidazole China G+ve/G-ve gynecological
and suppurative appendicitis

S

2014 finafloxacind fluoroquinolone USA acute otitis externa S

2015 zabofloxacin fluoroquinolone South Korea G+ve/G-ve CABP S

2017 delafloxacin fluoroquinolone USA G+ve/G-ve ABSSSI and
CABP

S

2018 plazomicin aminoglycoside USA G-ve UTI NP

2018 eravacycline tetracycline Europe G+ve/G-ve IAI NP

2018 omadacycline tetracycline USA G+ve/G-ve CABP and
ABSSSI

NP

2018 sarecyclined tetracycline USA G+ve acne NP

2019 pretomanid nitroimidazole USA TB S

2019 lefamulin pleuromutilin USA G+ve/G-ve CABP NP

2019 lascufloxacin fluoroquinolone Japan G+ve/G-ve CABP and
sinusitis

S

2019 cefiderocol cephalosporin siderophore USA G-ve cUTI and bacterial
infections

NP

2020 levonadifloxacin (1);
alalevonadifloxacin (2) (prodrug)

fluoroquinolone India G+ve/G-ve ABSSSI S

2021 contezolid (4) oxazolidinone China G+ve cSSSI S

BL/BLI combination drugs

2014 Zerbaxa: ceftolozane +
tazobactame

BL+ BLI USA G-ve cUTI, cIAI and HAP/
VAP

NP+NP

2015 Avycaz: avibactam (80)b +
ceftazidimee

DBO BLI+ BL USA G-ve cUTI, cIAI and HAP/
VAP

S+NP

2017 Vabomere/Vaborem:
vaborbactamb + meropeneme (66)

boronate BLI+ BL USA G-ve cUTI, cIAI and HAP/
VAP

S+NP

2019 Recarbrio: relebactam + imipenem
(77)e + cilastatin (78)e

DBO BLI+ BL+ renal
dehydropeptidase inhibitor

USA G-ve cUTI, cIAI and HAP/
VAP

S+NP+ S

ABSSSI acute bacterial skin and skin structure infections, BLI β-lactamase inhibitor, BL β-lactam, CABP community-acquired bacterial infections,
DBO diazabicyclooctane, HAP/VAP hospital/ventilator-associated pneumonia, cIAI complicated intra-abdominal infections, NP natural product, S
synthetic, SSSI skin and skin structure infections, cSSSI complicated SSSI, UTI urinary tract infections, cUTI complicated UTI, TB tuberculosis,
USA United States of America
aThe structures of antibacterial drugs approved from 2010–2022 are in Fig. 2 and those approved from 2000–2019 can be found in previous
reviews [23–26]
bFirst member of a new antibacterial or BLI class approved for human therapeutic use
cAlso approved for the treatment of amoebiasis and trichomoniasis
dApproved for topical use
eFirst launches: tazobactam in 1992, ceftazidime in 1983, meropenem (66) in 1998, and imipenem (77) + cilastatin (78) in 1985
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infections (ABSSSI), including diabetic foot infections and
concurrent bacteremia [42, 43]. Levonadifloxacin (1) has
activity against G+ve bacteria including MRSA, as well as
some G-ve bacteria [41], and a prescription-event mon-
itoring study was recently published [44]. Racemic nadi-
floxacin was first approved in 1993 to topically treat acne
and MRSA infections [45].

Contezolid (4) (Youxitai, MRX-1; IV) is an oxazolidi-
none developed by MicuRx Pharmaceuticals (Hayward,
CA, USA and Shanghai, People’s Republic of China). It
was approved by the Chinese National Medical Products
Administration (NMPA) in June 2021 for the treatment of
complicated skin and soft tissue infections (cSSTI),
including, but not limited to, MSSA, MRSA, Streptococcus
pyogenes and Streptococcus agalactiae [46–48]. The
development pathway from contezolid (4) [49] to contezolid
acefosamil (3) (MRX-4) was recently published [50].
The prodrug 3 provides dramatic improvements in solubi-
lity over the parent antibiotic (from 0.2 mg ml−1 to
>200 mg ml−1), leading to exposure of contezolid (4) in rats
after IV administration of contezolid acefosamil (3) like, or
higher than, that from direct IV administration of 4. A
phase-III trial (NCT05369052) evaluating contezolid ace-
fosamil (3) (po)/contezolid (4) (IV) for diabetic foot infec-
tions compared to linezolid began in May 2022.

Three non-traditional antibacterial drugs (two mAbs and
one biotherapeutic) were launched between 2013 and 2022 to
treat bacterial infections (Table 2), compared to 19 traditional
antibacterial drugs launched during this period (Table 1).

Table 2 Non-traditional
antibacterial drugs launched
from January 2013 to December
2022

Year
approved

Drug name Class Country of first
approval

Therapeutic
indication(s)

Lead
source

2016 obiltoxaximab mAb USA G+ve anthrax mAb

2016 bezlotoxumab mAb USA G+ve anthrax mAb

2022 Rebyota (RBX2660) microbiome USA G+ve CDI human

CDI C. difficile infection, G+ve Gram-positive bacteria, mAb monoclonal antibody, USA United States of
America
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Obiltoxaximab [51, 52] is a mAb that neutralizes harmful
toxins produced by Bacillus anthracis that was approved
using the US FDA Animal Rule based on their efficacy in
relevant animal models and safety in phase-I studies.
Another mAb that also neutralizes B. anthracis toxins,
raxibacumab [52, 53], was similarly approved in 2012. The
mAb bezlotoxumab, which binds to toxin B produced by C.
difficile [54, 55], was approved in 2016 to help prevent the
recurrence of CDI after successfully completing two phase-
III trials [56, 57].

In November 2022, a live biotherapeutic product, RBX2660
(Rebyota), was approved by the US FDA [58] to help prevent
CDI following antibiotic treatment, based on phase-III trial data
[59]. RBX2660 is a liquid suspension donor fecal microbiota
that has been screened for bacterial, viral and parasitic pathogens
[60, 61] that was developed by Rebiotix Inc (Roseville, MN,
USA), which is part of Ferring Pharmaceuticals (Saint-Prex,
Switzerland). There is also another phase-III trial
(NCT03931941) in progress.

Although outside the cut-off period, another non-traditional
antibacterial product, Vowst (SER-109), developed by Seres
Therapeutics Inc (Cambridge, MA, USA) and Nestlé Health
Science (Hoboken, NJ, USA) was approved by the US FDA
on 26 April 2023.1

Compounds undergoing clinical evaluation

Direct acting small molecules, mammalian-derived pep-
tides and polymeric compounds currently undergoing
clinical trials or under regulatory evaluation for the
treatment of bacterial infections on 31 December 2022 are
detailed in the following tables and figures: NDA and
phase-III in Table 3 and 6 with structures in Figs. 3, 4, 11,
and 12, phase-II in Table 4 with structures in Figs. 5–7,
and phase-I in Tables 5 and 6 with structures in Figs. 8–10
and 13. Non-traditional antibacterial candidates that are
not small molecules such as biotherapeutic microbiome
modulation, phage therapy, and antibodies have not been
included in this review.

Compounds in NDA/MAA filing (Table 3, Fig. 3)

Solithromycin (5) (T-4288, CEM-101; IV/po) is a semi-
synthetic 2-fluoroketolide [62] that is being developed by
FUJIFILM Toyama Chemical Co., Ltd. (Tokyo, Japan). In
April 2019, an NDA was submitted to the Japanese Phar-
maceuticals and Medical Devices Agency (PDMA) for use
of 5 as a treatment for otorhinolaryngological bacterial
infections. Although there have been no subsequent
updates, 5 is still listed on their November 2022 pipeline as
‘NDA filing’ for otorhinolaryngology and as phase-III for
respiratory infectious disease [63]. Solithromycin (5) was
previously being developed in the USA and Europe for
CABP but development was halted in 2016 and 2017
respectively [64].

Table 3 Antibiotics with NDA/MAA submitted or in phase-III clinical trials (structures in Figs. 3 and 4)

Name (synonym)a Compound class (lead source) Mode of actiona Administration; indication (developer)

NDA/MAA

solithromycin (6) (T-4288) erythromycin (NP) protein synthesis inhibition IV/po; respiratory tract infection
(FUJIFILM Toyama)

Phase-III

sulopenem (6) (IV) sulopenem
etzadroxil (7) (prodrug)+ probenecid (8)

penem (NP) PBP (cell wall) po; uUTI, cUTI and cIAI (Iterum
Therapeutics)

nafithromycin (9) (WCK 4873) macrolide (NP) protein synthesis po; CABP (Wockhardt)

gepotidacin (10) (GSK-2140944) triazaacenaphthylene (S) DNA gyrase (GyrA) —
different to quinolones

po; UTI and gonorrhea (GSK)

zoliflodacin (11) (ETX0914) spiropyrimidinetrione (S) DNA gyrase (GyrB) po; gonorrhea (Innoviva / GARDP)

Phase-II/III

benapenem (12) carbapenem (NP) PBP (cell wall) IV; UTI (Sihuan Pharmaceuticals)

epetraborole (13) (BRII-658) oxaborole (S) leucyl-tRNA synthetase
(LeuRS) – protein synthesis

po; NTM with a focus on M. avium
(AN2 Therapeutics / Brii Biosciences)

CABP community-acquired bacterial pneumonia, cIAI complicated intra-abdominal infections, cUTI complicated urinary tract infections, IV
intravenous, NP natural product, PBP penicillin binding protein, po per orem (oral), NTM non-tuberculosis mycobacteria, S synthetic, uUTI
uncomplicated urinary tract infections, UTI urinary tract infections
aCompounds with new pharmacophores and MoA are underlined

1 https://www.fda.gov/news-events/press-announcements/fda-a
pproves-first-orally-administered-fecal-microbiota-product-
prevention-recurrence-clostridioides https://ir.serestherapeutics.com/
news-releases/news-release-details/seres-therapeutics-and-nestle-hea
lth-science-announce-fda
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Compounds in phase-III trials (Table 3, Fig. 4)

Sulopenem (6) (CP-70,429), which is a synthetic thiopenem
BL first developed by Pfizer (New York, NY, USA) in the
1990s [65–68], and its prodrug sulopenem etzadroxil (7)
(PF-03709270; po) are being developed as treatments for
G-ve infections by Iterum Therapeutics (Dublin, Ireland).
To date, three phase-III trials have been completed and have
reported results: complicated intra-abdominal infections
(cIAI) (NCT03358576), cUTI (NCT03357614) [69] and
uUTI (NCT03354598) [70]. In November 2020, Interim
filed an NDA for uUTIs with the FDA [71] for orally
administered sulopenem etzadroxil (7) in combination with
probenecid (8) [72]. Probenecid (8) is a marketed drug for
gout and hyperuricemia that increases uric acid production,
which inhibits BL tubular renal secretion that leads to a
longer antibiotic half-life and higher serum concentrations
[73]. However, the FDA issued a Complete Response Letter

Fig. 4 Structures of compounds in phase-III clinical trials (Table 3)

Fig. 3 Structure of the antibacterial in the NDA and MAA develop-
ment stage (Table 3)
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(CRL) in July 2021 that indicated that the NDA was not
approvable in its present form [74]. In response to this CRL,
Iterum initiated another phase-III trial (NCT05584657) in
October 2022 to investigate sulopenem etzadroxil (7) +
probenecid (8) compared to amoxicillin + clavulanic acid
for uUTI, which is scheduled to finish in March 2024.

Nafithromycin (9) (WCK 4873; po) is an orally bioa-
vailable ketolide being developed by Wockhardt Limited
(Mumbai, Republic of India) that is being evaluated in a
phase-III trial (CTRI/2019/11/021964) in India as an oral
treatment for CABP. Nafithromycin (9) has broad spectrum
antibacterial activity against G+ves such as S. pneumoniae
and S. aureus and G-ves such as Haemophilus influenzae,
Moraxella catarrhalis, Legionella pneumophila, Myco-
plasma pneumoniae and Chlamydophila pneumoniae
[75–78].

Gepotidacin (10) (GSK-2140944; po) is a new chemo-
type bacterial Type II topoisomerase inhibitor [79] (new
triazaacenaphthylene class) being developed by Glaxo-
SmithKline (GSK) (London, UK) for uUTI and gonorrhea.
In November 2022, GSK announced that two phase-III
trials (NCT04020341 and NCT04010539) for cUTI were
stopped early for efficacy (positive news!), with an NDA
planned for the first half of 2023 [80]. Gepotidacin (10) is
also being evaluated in another cUTI phase-III trial with
Japanese participants (NCT05630833), as well as a phase-
III trial against uncomplicated urogenital gonorrhea caused
by Neisseria gonorrhoeae (NCT04010539). Gepotidacin
(10) has activity against a range of both G+ve and G-ve
pathogens [81–83], including Mycobacteria [84], Steno-
trophomonas maltophilia [85], Mycoplasma and Urea-
plasma [86].

Zoliflodacin (11) (ETX0914, AZD0914; po) is another
new chemotype topoisomerase inhibitor [87] (new spir-
opyrimidinetrione class) being developed by Entasis
Therapeutics (Waltham, MA, USA), which was recently
acquired by Innoviva (Burlingame, CA, USA) [88]. Zoli-
flodacin (11) is being evaluated in a phase-III trial
(NCT03959527) as an oral treatment for uncomplicated
gonorrhea [89–91] in partnership with the Global Anti-
biotics Research and Development Partnership (GARDP)
(Geneva, Switzerland). GARDP has the right to register
and commercialize 11 in low- and middle-income coun-
tries [92]. Zoliflodacin (11) also has activity against
Mycoplasma genitalium, which could broaden its effec-
tiveness as a treatment for sexually transmitted infections
[93].

Benapenem (12) (IV) is a carbapenem that completed a
phase-II/III trial in May 2020 (NCT04505683) as an intra-
venous treatment for cUTI, including pyelonephritis, by
Sihuan Pharmaceutical (Beijing, People’s Republic of
China). Benapenem (12) is structurally related to ertapenem
and has a similar extended human half-life of 7 h, which

supports once-daily IV dosing like ertapenem, an advantage
over other carbapenems that require multiple daily dosing
due to shorter half-lives [94, 95].

Epetraborole (13) (GSK2251052, AN3365, and BRII-658;
po) is a benzoxaborole leucyl-tRNA synthetase (LeuRS)
inhibitor [96], which is a new antibacterial target, being
evaluated by AN2 Therapeutics (Menlo Park, CA, USA) in a
phase-II/III (NCT05327803) against treatment-refractory
Mycobacterium avium complex (MAC) lung disease. MAC
accounts for up to 85% of non-tuberculosis mycobacteria
(NTM) related lung disease [97]. Epetraborole (13) has also
been reported to have in vivo activity againstMycobacterium
abscessus, another NTM involved in lung infections [98, 99].
Epetraborole (13) was originally developed as a treatment for
G-ve infections in phase-II trials for cUTI (NCT01381549)
and cIAI (NCT01381562) but these studies were halted due
to resistance developing in patients during the cUTI trial
[100]. Brii Biosciences (Durham, NC, USA and Shanghai,
People’s Republic of China) have licensed 13 for develop-
ment in the Greater China region [101].

Traditional antibacterial compounds in phase-II
trials (Table 4, Figs. 5 and 6)

Sanfetrinem cilexetil (14) (GV-104326; po) is a 1-(cyclo-
hexyloxycarbonyloxy)ethyl ester prodrug of the trinem
(tricyclic carbapenem) sanfetrinem (15) first developed in
the 1990s by Glaxo Wellcome, which is now part of GSK
(London, UK). Sanfetrinem (15) is active against a range of
G+ve (e.g., S. aureus, S. pneumoniae and H. influenzae)
and G-ve bacteria (e.g., E. coli, M. catarrhalis) [102–104].
Although sanfetrinem cilexetil (14) successfully completed
a phase-II trial for respiratory infections in 1999, no further
development work was undertaken until GSK started a
phase-II trial (NCT05388448) in May 2022, which is
evaluating 14 against rifampicin-susceptible pulmonary TB
[105]. There has been a recent surge in interest in investi-
gating carbapenem-type antibacterials as TB treatments, as
evidenced by TASK (Cape Town, South Africa) leading a
study that showed meropenem (66) in combination with
amoxicillin + clavulanic acid had efficacy in a phase-II TB
trial (NCT02349841) [106], as well as a consortium of
private and public organizations that screened approxi-
mately 8,900 carbapenems against Mycobacterium tuber-
culosis (Mtb) [107].

MGB-BP-3 (16) (po topical) is a DNA binding anti-
bacterial being developed by MGB Biopharma (Glasgow,
UK) that successfully completed a phase-II trial
(NCT03824795) in May 2020 for the treatment of C. dif-
ficile-associated diarrhea (CDAD) [108]. MGB-BP-3 (16)
was discovered at the University of Strathclyde (Glasgow,
UK) and was inspired by the actinomycetes-derived minor
groove binders, distamycin, netropsin and thiazotropsin
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[109, 110]. In addition to activity against C. difficile, 16 has
activity against a range of G+ve bacteria including S.
aureus and Enterococcus faecalis but is not active against
G-ve bacteria due to a lack of intracellular accumulation
[111]. It was shown that two molecules of 16 bound to the
minor groove of dsDNA, which then interfered with tran-
scription, the supercoiling action of gyrase, and the
relaxation and decatenation by topoisomerase IV enzymes
in vitro [111]. This is mechanistically distinct from fluor-
oquinolones that cause an increase in double strand breaks,
as well as induce recA and lexA SOS responses. A preprint
has reported that 16 also binds to and inhibits multiple
essential promoters on the S. aureus chromosome [112].
Furthermore, 16 is equally effective against ciprofloxacin-
resistant and ciprofloxacin-susceptible strains [113].

Exeporfinium chloride (17) (XF-73; topical) is a photo-
sensitizing porphyrin derivative with broad-spectrum G+ve
activity [114–116] and a low propensity for developing
resistance [117] being developed by Destiny Pharma
(Brighton, UK). Exeporfinium chloride (17) successfully
completed a phase-II trial (NCT03915470) in March 2021
that investigated its activity against nasal S. aureus in
patients at risk of post-operative infections. Destiny Pharma
plans to start two phase-III nasal decolonization trials in
2024 after securing a partnering deal [118].

Synthetic cannabidiol (18) (CBD, BTX 1801; topical) has
been evaluated in a phase-II trial (ACTRN12620000456954)
by Botanix Pharmaceuticals (Perth, Australia) for the clear-
ance of nasally colonized S. aureus, as well as in phase-II
trials in acne (BTX 1503, NCT03573518) and atopic der-
matitis (BTX 1204, NCT03824405). Cannabidiol (18) is the
major non-psychoactive component of cannabis (Cannabis
sativa and C. indica) and its G+ve antibacterial activity,
along with that of the major psychoactive compound Δ9-
tetrahydrocannabinol, was reported as having potential as a
topical antibacterial in 1976 [119]. Anti-MRSA activity of 18
was later confirmed in 2008 [120] and 2020 [121] studies,
along with other analogs. In 2021, an in-depth study showed
that 18 was active against drug resistant strains of S. aureus,
S. pneumoniae, E. faecalis, Cutibacterium acnes and C.
difficile, less active against S. pyogenes and S. agalactiae,
weakly active against Mycobacterium smegmatis and barely
active against Mtb [122]. While cannabidiol (18) was inac-
tive against E. coli, Klebsiella pneumoniae, Pseudomonas
aeruginosa and Acinetobacter baumannii, it also displayed
activity against four G-ve bacteria: N. gonorrhoeae, Neis-
seria meningitidis, M. catarrhalis and L. pneumophila [122].
It was also demonstrated that 18 was active against MSSA
and MRSA biofilms, was active in topical in vivo models
(though highly formulation-dependent) and that its MoA
involved cytoplasmic membrane disruption [122]. It was
recently shown that 18 could also act as an adjuvant with
bacitracin, a cell wall inhibitor, via inhibition ofTa
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undecaprenyl pyrophosphate dephosphorylation [123].
Genomic analysis demonstrated that less susceptible S. aur-
eus strains contained mutations in the transporter farE/farR
efflux pump system [123]. Additionally, screening of the
Nebraska Transposon Mutant Library identified that strains
with insertions involved in menaquinone biosynthesis had
increased susceptibility to 18 that could be reversed by the
addition of menaquinone [123]. The menaquinone

biosynthesis pathway has been shown to be a promising drug
target for S. aureus [124, 125].

TNP-2092 (19) (CBR 2092; IV) is being developed by
TenNor Therapeutics (Suzhou, People’s Republic of China)
and completed a phase-II trial (NCT03964493) for the
treatment of G+ve ABSSSI infections using IV dosing in
September 2020. TenNor have also evaluated capsule
administration of 19 for hyperammonemia/hepatic

Fig. 5 Structures of NP-derived compounds in phase-II clinical trials (Table 4)
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encephalopathy in a phase-II trial with patients with liver
cirrhosis [126, 127], while a phase-I trial (NCT04294862)
for Prosthetic Joint Infection (PJI) employed IV

administration [128]. TNP-2092 (19) is a rifamycin-
quinolizinone (lead ABT-719) hybrid G+ve antibacterial
discovered by Cumbre Pharmaceuticals [126, 129, 130] and

Fig. 6 Structures of synthetic compounds in phase-II clinical trials (Table 4)
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its MoA is via inhibition of the targets of both antibacterial
components: RNA polymerase (rifamycin) and DNA gyrase
and topoisomerase IV (quinolone/quinolizinone) [131].

TNP-2198 (20) (IV) is another hybrid being developed
by TenNor Therapeutics (Suzhou, People’s Republic of
China); in this case, a rifamycin-metronidazole hybrid [132]
for microaerophilic and anaerobic infections, which include
gastrointestinal diseases associated with Helicobacter
pylori, bacterial vaginosis and CDAD [133]. An H. pylori
phase-II trial (CTR20220625 [134]) of capsules of 20 in
combination with rabeprazole tablets (used to treat peptic
ulcer disease) and amoxicillin capsules was completed in
September 2022. An X-ray crystal structure was recently
published that showed 20 bound to the rifamycin binding
site on RNA polymerase with the nitroimidazole portion
interacting directly with the DNA template-strand in the
RNA polymerase active-center cleft, forming a hydrogen
bond with a base of the DNA template strand [132]. This is
supportive of RNA polymerase inhibition being involved in
the MoA of 20.

Afabicin (21) (Debio 1450, AFN 1720) [135–137] is a
phosphate prodrug of afabicin desphosphono (22) (Debio
1452, AFN-1252; IV/po) being developed by Debiopharm
Group (Lausanne, Switzerland). The lead compound was

originally discovered by GSK (London, UK) and licensed
to Affinium Pharmaceuticals, who were acquired by
Debiopharm in February 2014. Afabicin (21) is being
evaluated in a phase-II trial (NCT03723551) using an IV/
oral switch strategy for the treatment of S. aureus bone or
joint infections [138]. In an earlier phase-II trial
(NCT02426918), 21 was shown to be clinically non-
inferior to vancomycin/linezolid against staphylococcal
ABSSSI [139]. Afabicin (21) specifically inhibits sta-
phylococcal FabI [140–142], which is an essential
enzyme in the final step of the fatty acid elongation cycle
[143].

Peceleganan (23) (PL-5, V681; topical) is a 26-mer α-
helical cationic hybrid peptide of cecropin A and melittin B
[144, 145] being developed by Jiangsu ProteLight Phar-
maceutical and Biotechnology (Jiangyin, People’s Republic
of China). Peceleganan (23) is administered by spray and
has successfully completed a phase-II trial in China
(ChiCTR2000033334) for the treatment of bacterial wound
infections [146]. No levels of 23 were detected in the
patients’ blood. This indicated that there was minimal or no
systemic exposure [146], a significant consideration since
some cationic peptides have a history of causing nephro-
toxicity. Peceleganan (23) has activity against both G+ve
and G-ve bacteria [144, 145] and there are plans to start a
phase-III trial in 2023.

Recce-327 (R327; topical and IV) is an acrolein polymer
with a molecular weight range of 1–1.5 kDa [147] being
evaluated by Recce Pharmaceuticals (Perth, Australia) in a
phase-I/II (ACTRN12621000412831) for the treatment of
G+ve and G-ve burn wound infections. A phase-I trial
(ACTRN12621001313820) using IV administration of
Reece-327 is being conducted with the goal of developing
the polymer for serious bacterial infections such as sepsis in
the future. It has been reported that the polymer disrupts
bacterial cellular bioenergetics via membrane potential and/
or ATP synthesis [148].

Pravibismane (24) (MBN-101, bismuth ethanedithiol,
BisEDT; topical) is a broad spectrum antibacterial with anti-
biofilm activity [149] that is being developed by Microbion
Corporation (Bozeman, MT, USA). A phase-II trial
(NCT05174806) evaluating 24 as a topical treatment for
diabetic foot infections started in June 2022, while a phase-
II trial (NCT02436876) using intraoperative administration
in patients diagnosed with an orthopedic infection was
completed in July 2018. This clinical work is supported by
the Cystic Fibrosis Foundation (Bethesda, MD, USA) and
CARB-X (Boston, MA, USA). It has been reported that 24
can cause bacterial membrane depolarization, which dis-
rupts cellular bioenergetics [150]. Bismuth has intrinsic
antibacterial activity and is a component of Pepto Bismol®

(bismuth subsalicylate) [151] and Xeroform® (bismuth tri-
bromophenate) [152], and is used in combination with

Fig. 7 Structures of small molecule non-traditional antibacterials in
phase-II clinical trials (Table 4)
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antibiotics and a proton pump inhibitor to treat H. pylori
infections [153]. There has recently been a resurgence in
interest in the antibacterial activity of metal complexes
[154, 155].

DNV-3837 (25) (MCB-3837; IV) is a phosphate prodrug
of the oxazolidinone-quinolone hybrid DNV-3681 (26)
(MCB-3681) being developed by Deinove (Montpellier,
France). It is currently being evaluated in a phase-II CDI

trial (NCT03988855) with IV administration [156]. Unfor-
tunately, Deinove entered receivership proceedings in
November 2022 [157]. The IV administration contrasts with
most other antibacterials being developed for CDI, includ-
ing non-traditionals [17, 21], that are almost exclusively
delivered orally with little or no systemic distribution (po
topical). DNV-3837 (25) also showed G+ve activity against
MRSA, Francisella tularensis and B. anthracis [158–160].

Fig. 8 Structures of NP and peptide-derived compounds in phase-I clinical trials (Table 5)
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Ibezapolstat (27) (ACX-362E; po topical) is a bis-
substituted guanine derivative that is a bacterial DNA
polymerase IIIC inhibitor [161–164] that is being evaluated
in a phase-II CDI trial (NCT04247542) [165] by Acurx
Pharmaceuticals (White Plains, NY, USA). DNA poly-
merase IIIC is a new target for clinical development and is
an essential enzyme in bacteria with low guanine and
cytosine content, such as Bacillus, Clostridioides, Enter-
ococcus, Mycoplasma, Lactobacillus, Listeria, Pneumo-
coccus, Staphylococcus and Streptococcus [163].

CRS3123 (28) (REP3123; po topical) is a methionyl
tRNA synthetase (MetRS) inhibitor (new diaryldiamine
class) being developed by Crestone (Boulder, CO, USA)
that selectively acts on S. aureus and C. difficile MetRS
with little effect on G-ve and mammalian orthologs
[166, 167]. CRS3123 (28) prevents C. difficile sporulation,
which leads to the inhibition of toxin production, and spares
most normal gut flora [168]. CRS3123 (28) has completed
two phase-I trials (NCT02106338 and NCT01551004)
[169, 170] and is currently being evaluated in a CDI phase-
II trial (NCT04781387) versus a vancomycin comparator.
In the previous pipeline review [23], 28 was listed as having
its development halted or discontinued. This a reminder that
relatively long delays can occur in antibacterial drug
development, which have been exacerbated by the COVID-
19 pandemic due to disruptions to clinical trial enrollments
and day-to-day operations of many organizations [171].

Anti-mycobacterial compounds in phase-II trials
(Table 4, Fig. 6)

Delpazolid (29) (RMX2001, LCB01-0371; po) is an oxazo-
lidinone developed by LegoChem Biosciences, Inc. (Dae-
jeon, Republic of Korea), which has activity against G+ve
bacteria [172], Mtb [173, 174] and NTMs [175, 176]. Del-
pazolid (29) is currently being evaluated in a phase-II TB trial
(NCT04550832) in combination with standard-dose

Fig. 9 Structures of synthetic-derived compounds in phase-I clinical trials (Table 5)

Fig. 10 Structures of publicly disclosed small molecule non-traditional
antibacterials in phase-I clinical trials (Table 5)
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bedaquiline, delamanid and moxifloxacin, compared to
standard-dose bedaquiline, delamanid and moxifloxacin
alone. In addition, a combination of 25 and vancomycin is
being evaluated against vancomycin alone for hospitalized
adults with MRSA bacteremia in a phase-IIa trial
(NCT05225558). An early bactericidal activity (EBA) [177]
phase-II trial (NCT02836483) showed that 29 monotherapy
reduced the log-CFU of Mtb in sputum by approximately
25%, and had fewer side effects than other oxazolidinones
[178].

Sutezolid (30) (PF-2341272, PNU-100480; po) [179] is
an oxazolidinone originally developed by Upjohn & Co
(later was incorporated into Pfizer (New York, NY, USA))
with activity against TB [174, 180–182] and NTMs [176].
Sequella (Rockville, MD, USA) licensed 30 from Pfizer and
completed a phase-II trial (NCT01225640) in December
2011 in naive patients with drug-sensitive pulmonary TB
[183]. The European and Developing Countries Clinical
Trials Partnership (EDCTP; The Hague, Netherlands) is
leading a phase-II trial (NCT03959566) in partnership with
Sequella evaluating a combination of 30 with bedaquiline,
delamanid and moxifloxacin, compared against bedaquiline,
delamanid and moxifloxacin alone. The TB Alliance (New
York, NY, USA) and partners [184] will also evaluate
sutezolid (30) in a phase-II (NCT05807399) and in com-
bination with bedaquiline and pretomanid in a phase-II/III
trial (NCT05686356) later in 2023.

Telacebec (31) (Q203; po) is an imidazo[1,2-a]pyridine
amide [185–187] being developed by Qurient Co., Ltd.

(Seongnam-si, Republic of Korea) that completed an EBA
TB phase-II trial (NCT03563599) in September 2019
[188, 189]. The imidazo[1,2-a]pyridine amide pharmaco-
phore was identified during phenotypic high-content assays
in infected macrophages and 31 inhibits TB growth via
targeting QcrB, which is a subunit of the menaquinol
cytochrome c oxidoreductase (bc1 complex)
[185, 190, 191]. Telacebec (31) also has promise as a
treatment for Buruli ulcer (Mycobacterium ulcerans)
[192, 193].

Fobrepodacin (32) (SPR720, pVXc-486; po) is a DNA
gyrase inhibitor phosphate prodrug being investigated by
Spero Therapeutics (Cambridge, MA, USA) in a phase-II
trial (NCT05496374) with patients with MAC pulmonary
disease. The active metabolite SPR719 (33) has activity
against various Mycobacteria [194–196] and results from a
phase-I trial (NCT03796910) suggested that predicted
therapeutic exposures could be attained with once-daily oral
administration [197]. Fobrepodacin (32) and SPR719 (33)
were originally discovered by Vertex Pharmaceuticals
(Boston, MA, USA) [198–200] and inhibit DNA synthesis
via bacterial gyrase (GyrB) and topoisomerase IV ParE,
which is a similar MoA to novobiocin [201].

BTZ-043 (34) (po) is the first member of a new ben-
zothiazinone (BTZ) class of TB antibacterials that com-
pleted a phase-I/II trial (NCT04044001) in May 2022. This
study evaluated the safety, tolerability and EBA of 34, and
was led by the EDCTP (The Hague, Netherlands). BTZ-043
(34) inhibits the essential mycobacterial cell wall bio-
synthesis enzyme decaprenylphosphoryl‐β‐D‐ribose (DPR)
2′‐oxidase (DprE1) via in vivo reduction of the nitro group,
generating a reactive nitroso intermediate that forms a
covalent semi-mercaptal adduct with cysteine-387
[202–206]. It has been shown that BTZs can be de-
aromatized in vivo through the formation of a Meisenhei-
mer complex, which could also reduce their in vivo half-
lives [207, 208]. A BTZ analog, macozinone (53, Fig. 9) is
being evaluated in a phase-I trial.

Quabodepistat (35) (OPC-167832; po) is an antitubercular
3,4-dihydrocarbostyril derivative [209] being developed by
Otsuka Pharmaceutical (Tokyo, Japan) that started a phase-II

Fig. 11 Structures of BLI and associated β-lactam antibacterial in
NDA/MAA filing (Table 6)

Fig. 12 Structures of BLIs in phase-III clinical trials (Table 6)
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trial (NCT05221502) in April 2022 in combination with
delamanid and bedaquiline, compared to a combination of
rifampin, isoniazid, ethambutol, and pyrazinamide. Quabo-
depistat (35), which completed a phase-I/II trial in February
2022 (NCT03678688), exerts its anti-mycobacterial activity

through inhibition of the cell wall synthesis enzyme DprE1
[210], which is the same target as BTZ-043 (34), macozinone
(53) and TBA-7371 (38).

GSK3036656 (36) (GSK656; po) is a boron containing
leucyl t-RNA synthetase inhibitor (new MoA) [211, 212] that

Fig. 13 Structures of BLIs and associated β-lactam antibiotics in phase-I clinical trials (Table 6)
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GSK (London, UK) are currently investigating in a phase-II
trial (NCT05382312) in combination with either delamanid,
bedaquiline, both delamanid and bedaquiline or standard of
care for 14 days in participants with newly diagnosed sputum
smear positive drug-sensitive pulmonary TB. A phase-II EBA
TB trial (NCT03557281) for 36 was completed in December
2021. A dechloro analog, epetraborole (13, Fig. 4), is cur-
rently in a phase-II/III trial (NCT05327803) against treatment-
refractory MAC lung disease.

TBA-7371 (37) (po) is a substituted 1,4-azaindole that is
being developed as a new TB treatment by the Global
Alliance for TB Drug Development (New York, NY, USA),
the Foundation for Neglected Disease Research (Bangalore,
Republic of India) and the Bill & Melinda Gates Medical
Research Institute (Cambridge, MA, USA). TBA-7371 (37)
is currently being evaluated in a phase-II EBA and phar-
macokinetic (PK) trial (NCT04176250) in patients with
rifampicin-sensitive TB. TBA-7371 (37) is a non-covalent
DprE1 inhibitor discovered by scaffold hopping from tela-
cebec (31), which has a different mechanism [213–215].

Sudapyridine (38) (WX-081; po) is a bedaquiline analog
with a chlorophenyl-methoxypyridyl group replacing the
bedaquiline bromo-2-methoxy-3-quinolyl substituent [216]
being developed by Shanghai Jiatan Biotech (Shanghai,
People’s Republic of China). Sudapyridine (38) is being
evaluated in a phase-II EBA trial (NCT04608955) in
patients with susceptible and drug-resistant TB. Sudapyr-
idine (38) has a similar in vitro and in vivo activity profile to
bedaquiline, but had no adverse effects on blood pressure,
heart rate, or qualitative ECG parameters during non-
clinical toxicology studies [217]. Sudapyridine (38) also has
in vitro activity against most NTM species [218].

Pyrifazimine (39) (TBI-166; po) is a clofazimine analog
[219] (riminophenazine class) that completed a phase-II
EBA TB trial (NCT04670120) in June 2021 run by the
Institute of Materia Medica (Shanghai, People’s Republic of
China), Chinese Academy of Medical Sciences (Beijing,
People’s Republic of China) and Peking Union Medical
College (Beijing, People’s Republic of China). Although
clofazimine has been used to treat leprosy (Mycobacterium
leprae infections) since 1962 and was recently incorporated
into some short-course MDR-TB regimens [220, 221], its
tissue accumulation can cause skin discoloration that can
take months to clear. Pyrifazimine (39) was designed to
maintain activity against TB, have improved PK/pharma-
codynamics (PD) properties, and cause less skin dis-
coloration [222–225].

Non-traditional antibacterial compounds in phase-II
trials (Table 4, Fig. 7)

Fluorothiazinon (40) (ftortiazinon, fluorothyazinon, C-55;
po) is an orally administered inhibitor of the bacterial type

III secretion system (T3SS), which is a highly conserved
G-ve anti-virulence target [226] Fluorothiazinon (40) was
developed by the Gamaleya Research Institute of Epide-
miology and Microbiology (Moscow, Russia) [227–230],
and has been evaluated in a phase-II trial (NCT03638830)
in combination with the cephalosporin cefepime (41) as a
potential treatment for patients with cUTI caused by P.
aeruginosa.

Dovramilast (42) (CC-11050, AMG-634; po) is an
isoindole phosphodiesterase type 4 (PDE4) inhibitor
being developed for TB [231, 232] and leprosy type 2
reactions by Medicines Development for Global Health
(Melbourne, Australia), which licensed 42 from Amgen
(Thousand Oaks, CA, USA) in December 2020
[233, 234]. Dovramilast (42) is being evaluated in a
phase-II trial (NCT03807362) at The Leprosy Mission
Nepal (Katmandu, Nepal) for patients with erythema
nodosum leprosum (ENL), which is an inflammatory
disorder triggered by leprosy. Another phase-II trial
(NCT02968927) run by The Aurum Institute NPC
(Johannesburg, South Africa) has been completed
[235, 236]. PDE4 inhibitors are an adjunctive host-
directed therapy designed to modulate the inflammatory
response to Mtb infection by reducing, but not fully
blocking, TNF-α production by the host cells. The
NCT02968927 trial used 42 in combination with 2HRZE/
4HR therapy, which is 2 months of isoniazid (H),
rifampicin (R), pyrazinamide (Z) and ethambutol (E),
followed by a continuation phase of 4 months of iso-
niazid and rifampicin, while the NCT03807362 trial
examines the safety and efficacy of CC-11050 as a
monotherapy.

Traditional antibacterial compounds in phase-I trials
(Table 5, Figs. 8 and 9)

SPR206 (43) (IV) is a polymyxin analog being developed
by Spero Therapeutics (Cambridge, MA, USA) with
activity against MDR G-ve bacteria [237] and reduced
nephrotoxicity compared to polymyxin. SPR206 (43) has
completed three phase-I trials (NCT03792308,
NCT04868292, and NCT04865393), with a phase-II trial
planned for Q4 2023 [238]. Everest Medicines (Shanghai,
People’s Republic of China) had licensed the rights for 43
in China, South Korea and several Southeast Asian coun-
tries [239], while Pfizer (New York, NY, USA) has the
remaining rights outside of the USA [238].

MRX-8 (IV) is another polymyxin analog being developed
by MicuRx (Hayward, CA, USA and Shanghai, People’s
Republic of China) against G-ve bacteria [240–242] that
completed a phase-I trial in 2021 (NCT04649541), while
another phase-I is ongoing in China [243]. Although MRX-8’s
structure has not been publicly disclosed, it is a polymyxin B
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analog with a fatty acid tail linked via a polar ester group to
form a ‘soft’ prodrug [241, 244].

QPX-9003 (44) (F365, BRII-693; IV) is also a poly-
myxin derivative being developed by Qpex Biopharma (San
Diego, CA, USA). It is a potential treatment for P. aeru-
ginosa and A. baumannii infections and completed a phase-
I trial in July 2022 (NCT04808414) [245]. QPX-9003 (44)
was reported by researchers at Monash University (Mel-
bourne, Australia) and Qpex to have reduced nephrotoxi-
city, acute toxicity and in vitro lung surfactant inactivation
compared to other polymyxins [246]. Brii Biosciences
(Durham, NC, USA and Shanghai, People’s Republic of
China) have licensed QPX-9003 (44) for development in
the Greater China region [101].

RG6319 (administration route not disclosed) is an inhi-
bitor of LepB, which is an E. coli Type I signal peptidase
(SPase), listed on Roche’s (Basel, Switzerland) pipeline as
being evaluated in a phase-I clinical trial for cUTI [247].
SPases are enzymes that hydrolyze N-terminal signal pep-
tides from proteins that are secreted across the cytoplasmic
membrane and have a critical role in the viability and
virulence of bacteria [248]. Although the structure of
RG6319 has not been disclosed, Genetech (San Francisco,
CA, USA) and The Scripps Research Institute (La Jolla,
CA, USA) have been evaluating derivatives of the arylo-
mycins, which are Streptomyces-derived SPase inhibitors,
such as G0775 [249, 250].

Zifanocycline (45) (KBP-7072; IV/po) is a tetracycline
derivative (aminomethylcycline) being developed by KBP
BioSciences (Princeton, NJ, USA) that has completed three
phase-I trials (NCT02454361, NCT02654626, and
NCT04532957) and is currently being evaluated in another
phase-I trial (NCT05507463). Zifanocycline (45) has broad
spectrum antibacterial activity [251–253] and a preprint has
disclosed an X-ray structure of 45 bound to the Thermus
thermophilus 30 S ribosomal subunit [254]. As with
CRS3123 (28), zifanocycline (45) was listed as dis-
continued or halted in the previous review [23].

Apramycin (46) (EBL-1003; IV) is an aminoglycoside
being developed by Juvabis AG (Zurich, Switzerland) that
completed a phase-I trial (NCT04105205) in October 2020. A
new phase-I trial (NCT05590728) was recently started by the
National Institute of Allergy and Infectious Diseases (NIAID;
Rockville, MD, USA). Apramycin (46) has activity against
carbapenem- and aminoglycoside-resistant Enterobacteriaceae,
A. baumannii and P. aeruginosa [255, 256]. Apramycin (46)
has been widely used as a veterinary antibiotic to treat E. coli
and other G-ve infections [257], with European approval to
treat colibacillosis and salmonellosis in calves, bacterial
enteritis in pigs, colibacillosis in lambs and E. coli septicemia
in poultry [258]. It was discovered in the 1960s at Eli Lilly &
Co (Indianapolis, IN, USA) as a NP produced by Strepto-
myces tenebrarius [259, 260].

PLG0206 (47) (WLBU2; topical and IV) is a 24 residue
membrane disrupting cationic peptide [261, 262] being
evaluated by Peptilogics (Pittsburgh, PA, USA) in a phase-I
trial (NCT05137314) for its potential to treat PJI in con-
junction with the DAIR (debridement, antibiotics, and
implant retention) surgical procedure after total knee
arthroplasty. PLG0206 (47) has also successfully completed
a phase-I trial with IV administration [263]. PLG0206 (47)
has broad spectrum activity against G+ve and G-ve bac-
teria, including biofilms [261, 264, 265].

PL-18 (48) (HPRP-A1; topical) is a 15-mer α-helical
cationic peptide derived from the N-terminus of the H.
pylori ribosomal protein L1 (RpL1) that is being developed
by Jiangsu ProteLight Pharmaceutical and Biotechnology
(Jiangyin, People’s Republic of China). In August 2022, 48
started a phase-I trial (NCT05340790) in Australia for
bacterial vaginosis using suppository administration. PL-18
(48) has activity against G-ve and G+ve bacteria
[144, 145, 266, 267] and fungi [266], as well as induction of
HeLa cell apoptosis [268] and hemolytic activity
[266, 267]. These off-target activities suggest why topical
administration is required for 48.

Murepavadin (49) (POL7080, RG7929; inhalation) is a
synthetic 14-mer cyclic peptide derived from protegrin I
being developed by Spexis (Basel, Switzerland), which was
formed through a merger of EnBiotix and Polyphor in
December 2021. Murepavadin (49) has potent and selective
activity against P. aeruginosa via binding to the N-terminal
of the β-barrel protein LptD (Imp/OstA), a novel MoA
[269–271]. Murepavadin (49) is reported to be in a phase-I
trial for cystic fibrosis using inhaled administration [272],
and was previously investigated in two phase-III trials for
the treatment of Pseudomonas nosocomial pneumonia
(NCT03582007) and VAP infections (NCT03409679).
However, these trials were halted due to adverse events —
an increase in serum creatinine and acute kidney injury in
the nosocomial pneumonia trial in 2019 [273].

TXA709 (50) (po) is an anti-MRSA prodrug of TXA707
(51) that has been evaluated in a phase-I trial conducted by
TAXIS Pharmaceuticals (Monmouth Junction, NJ, USA)
[274]. TXA707 (50) is an inhibitor of the new antibacterial
target FtsZ, which is the bacterial homolog of tubulin that
plays a critical role in bacterial cell wall division in both G
+ve and G-ve bacteria [275, 276]. Prolysis Ltd (Oxford,
UK) originally identified PC190723 [277–279] and repla-
cement of its Cl substituent with a CF3 group in TXA707
(51) enhanced metabolic stability, PK properties and in vivo
efficacy against S. aureus [280, 281].

RG6006 (RO7223280, Abx MCP; IV) is being devel-
oped by Roche (Basel, Switzerland) and a phase-I trial
(NCT05614895) was started in December 2022 in critically
ill participants with bacterial infections using IV adminis-
tration. RG6006 will be developed as a treatment for A.
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baumannii infections [247] and is a tethered macrocyclic
peptide [282, 283]; however, the structure and MoA have
not been publicly disclosed.

BWC0977 (52) (IV/po) is an oxazolidinone containing
‘novel bacterial topoisomerase inhibitor’ (NBTI) [284] with
similar activity against DNA gyrase GyrA and topoisome-
rase IV [284–286] being developed by Bugworks Research
Inc (Bangalore, Republic of India). BWC 0977 (52) is being
evaluated in a phase-1 trial (NCT05088421) using IV
administration for treating critical care G-ve infections
[287, 288] with later oral step-down administration.

Anti-mycobacterial compounds in phase-I trials
(Table 5, Fig. 9)

Macozinone (53) (PBTZ169; po) is a benzothiazinone
(BTZ) derivative [289] that was evaluated in a phase-II EBA
TB trial (NCT03334734) by Nearmedic Plus LLC (Moscow,
Russia), but the trial was discontinued in February 2018 due
to slow enrollment. The Innovative Medicines for Tuber-
culosis (iM4TB) Foundation (Lausanne, Switzerland) is
leading the development of 53 in the rest of the world and
completed a Phase-I trial (NCT03776500) in March 2020.
Macozinone (53) is a second generation analog of BTZ043
(34, Fig. 6) with the same MoA (inhibition of the myco-
bacterial cell wall biosynthesis enzyme DprE1) with superior
physicochemical properties [289]; however, efforts have
been undertaken to improve its PK and PD properties [290].

TBI-223 (54) (po) is an oxazolidinone [291] being
developed by the TB Alliance (New York, NY, USA) and
the Institute of Materia Medica (Shanghai, People’s
Republic of China) that has completed two phase-I trials
(NCT03758612 and NCT04865536). TBI-223 (54) was
recently found to be active against S. aureus in MRSA
mouse models [292].

TBAJ-876 (55) (po) is a bedaquiline analog (diarylquino-
lines class) with activity against Mtb [293] and M. abscessus
[294], and minimal hERG channel inhibition [295, 296] that
was discovered at the University of Auckland (Auckland,
New Zealand). TBAJ-876 (55) is now being developed by the
TB Alliance (New York, NY, USA) and completed a phase-I
trial (NCT04493671) in November 2022, which focused on
safety, tolerability, and PK. In September 2022, another
phase-I trial (NCT05526911) was initiated that also evaluates
its effects on CYP3A4 and P-glycoprotein. Like bedaquiline,
55 is an inhibitor of mycobacterial F-ATP synthase [297] but
does not retain bedaquiline’s protonophore activity [298].
Cryogenic electron microscopy (cryo-EM) was recently used
to show the binding of 55 to the Fo domain in M. smegmatis
F1Fo-ATP synthase [299].

TBAJ-587 (56) (po) is another bedaquiline analog [295]
with variations in the substituents on one pyridyl ring that
lead to more potent in vitro and in vivo activity against Mtb

[300]. TBAJ-587 (56) is currently in a phase-1 trial
(NCT04890535) to evaluate its safety, tolerability, and PK.

GSK2556286 (57) (GSK-286; po) is a substituted uracil
derivative being evaluated by GSK (London, UK) in a phase-I
trial (NCT04472897) as a potential TB treatment [301].
GSK2556286 (57) was discovered by screening against Mtb
that resides within human (THP-1) macrophage-like differ-
entiated monocytes and had an IC50 of 0.07 µM [302]. In
addition, 57 required cholesterol to show activity in an axenic
culture and resistance mutations were mapped to Mtb ade-
nylyl cyclase (cya) Rv1625c [302–304], which has been
implicated in cholesterol utilization [305]. This is a new MoA.

Non-traditional antibacterial compounds in phase-I
trials (Table 5, Fig. 10)

BVL-GSK098 (58) [306] (po) is the first member of a new
non-traditional, anti-TB antibacterial class (spiroisoxazoline)
being developed by BioVersys (Basel, Switzerland) and GSK
(London, UK). BVL-GSK098 (58) completed a phase-I trial
(NCT04654143) in May 2022. BVL-GSK098 works through
inactivation of a Mtb TetR-like repressor, EthR2, which
reverses ethionamide (59)-acquired resistance and increased
basal sensitivity to 59 [307, 308]. A phase-II EBA trial
(NCT05473195) is scheduled to evaluate ethionamide (59)
with or without BVL-GSK098 (58) in participants with
rifampicin- and isoniazid-susceptible pulmonary TB.

GSK3882347 (po) is an E coli Type 1 fimbrin D-mannose
specific adhesin (FimH) inhibitor being evaluated by GSK
(London, UK) and Fimbrion Therapeutics (St. Louis, MO,
USA) with support from CARB-X (Boston, MA, USA) [309].
GSK3882347 completed a phase-I trial (NCT04488770) in
May 2021 and is currently being evaluated in a Phase-Ib trial
(NCT05138822) in participants with acute uUTI. A majority
of UTIs are caused by uropathogenic E. coli (UPEC) [310],
which use their type 1 pili to adhere to the cell wall via FimH
adhesin [311]. Targeting the mannose-binding lectin domain
of FimH prevents UPEC from binding to the bladder wall and
is a promising antivirulence approach for UTI and Crohn’s
Disease [312–314]. Although the structure of GSK3882347
has not been publicly disclosed, it is likely to be a mannose-
derived biphenyl derivative [315].

ALS4 (po) is an S. aureus anti-virulence antibacterial
being developed by Aptorum Therapeutics Limited (Hong
Kong, People’s Republic of China) that has completed one
phase-II trial (NCT05274802). Staphyloxanthin is a golden
colored carotenoid with antioxidant activity that helps to
neutralize reactive oxygen species (ROS) secreted by neu-
trophils, which protects bacteria [316, 317]. ALS4 is an
inhibitor of 4,4ʹ-diapophytoene desaturase (CrtN), which is an
enzyme involved in the biosynthesis of staphyloxanthin;
however, although the structure of ALS4 has not been pub-
licly disclosed, it is likely to be related to NP16 [318, 319].
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β-Lactam/β-lactamase Inhibitor (BL/BLI)
Combinations Undergoing Clinical
Evaluation

The discovery of the Streptomyces-derived BLI clavulanic
acid was a significant breakthrough that rescued the use of
many BL antibiotics by inactivating enzymes responsible
for their destruction. There have been four new BL/BLI
combinations approved since 2014 (Table 1): Zerbaxa in
2014 (contains a new cephalosporin, ceftolozane), Avycaz
in 2015 (contains a new DBO-type BLI, avibactam),
Vabomere in 2017 (contains a new boronate-type BLI,
vaborbactam), and Recarbrio in 2019 (contains a new DBO-
type BLI, relebactam), but no new combinations were
approved from 2019–2022. In this section, ten new BL/BLI
combinations are currently being evaluated in clinical trials
or under an NDA/MAA filing are discussed (Table 6,
Figs. 11–13). It should be noted that BL/BLI combinations
usually move straight from phase-I into phase-III trials.

BL/BLI combinations in NDA/MAA filing (Table 6,
Fig. 11)

Durlobactam (60) (ETX2514) + sulbactam (61) (combination:
SUL-DUR, ETX2514SUL; IV) is being developed by Entasis
Therapeutics (a subsidiary of Innoviva, Burlingame, CA, USA)
and completed a phase-III trial (NCT03894046) for treatment of
infections caused by A. baumannii-calcoaceticus (ABC) com-
plex [320–322] in June 2021. In this trial, SUL-DUR demon-
strated statistical non-inferiority versus colistin for the primary
end point of 28-day all-cause mortality in patients with
carbapenem-resistant ABC infections and a significant differ-
ence in clinical cure rates, as well as a statistically
significant reduction in nephrotoxicity [323]. On 17 April 2023,
the US FDA Antimicrobial Drugs Advisory Committee voted
12-0 in favor of SUL-DUR for the treatment of adults with
HABP/VABP caused by susceptible ABC strains.2 Durlo-
bactam (60) is a DBO-type BLI [324–326], while sulbactam
(61) is a clavulanic acid-type BLI first launched in 1986 that
also has direct-acting antibacterial activity against Acinetobacter
spp., but requires co-administration of another BLI to restore its
activity against MDR strains.

BL/BLI combinations in phase-III trials (Table 6,
Fig. 12)

Taniborbactam (62) (VNRX-5133; IV) [327] + cefepime (41)
is being developed by VenatoRx Pharmaceuticals (Malvern,
PA, USA) and completed a phase-III trial (NCT03840148) in
December 2021 for cUTI, including acute pyelonephritis.

VenatoRx have revealed that cefepime-taniborbactam had a
superior primary efficacy endpoint to the carbapenem mer-
openem (66) in this trial with a similar safety profile [328], and
plan to submit an NDA to the US FDA in 2023 [329]. The
taniborbactam (62) + cefepime (41) combination has activity
against E. coli, K pneumoniae, carbapenemase-producing
Enterobacterales and P. aeruginosa [330–332]. Tani-
borbactam (62) is a bicyclic boronate BLI [333] (new class)
that is effective against both serine- and metallo-β-lactamases,
including extended-spectrum β-lactamase (ESBL), OXA,
KPC, NDM and VIM enzymes, but not IMP [327, 334], while
cefepime (41) is a fourth-generation cephalosporin first
approved in 1994.

Enmetazobactam (63) (AAI 101; IV) is a clavulanic acid-
type BLI with a structure closely related to tazobactam with a
methyl substituent on the tazobactam triazole ring. It has
activity against ESBLs and some class A and D carbapene-
mases [335–337], and is being developed by Allecra Ther-
apeutics (Weil am Rhein, Germany and Saint Louis, France).
A combination of 63 and the cephalosporin cefepime (41)
completed a phase-III trial (NCT03687255) in February 2020
for cUTI using IV administration, and successfully met criteria
for non-inferiority, as well as superiority to piperacillin-
tazobactam with respect to the primary efficacy outcome of
clinical cure and microbiological eradication [338]. Allecra
Therapeutics is planning to submit an MAA in Europe, fol-
lowed by an NDA in the USA.

Zidebactam (64) (WCK 5107; IV) is a DBO-type BLI
being developed byWockhardt Limited (Mumbai, Republic of
India) that inhibits PBPs and several β-lactamases, while
enhancing BL activity [339] against A. baumannii, P. aeru-
ginosa and CRE [340–342]. A combination of 63 and cefe-
pime (41) (combination WCK 5222, FEP-ZID) started a
phase-III trial (NCT04979806) in August 2022 as an IV
administered treatment for cUTI and acute pyelonephritis. A
phase-I trial (NCT05645757) of 63 in combination with the
carbapenem ertapenem (combination WCK 6777) should
commence soon, with this combination showing potent in vitro
activity against many carbapenemases and β-lactamases [343].

BL/BLI combinations in phase-I trials (Table 6,
Fig. 13)

Nacubactam (65) (OP0595, FPI-1459, RG6080,
RO7079901; IV) is a DBO-type BLI [344–346], which was
developed by Meiji Seika Pharma (Tokyo, Japan). Meiji
Seika and Fedora Pharmaceuticals (Edmonton, AB,
Canada) had previously partnered with Roche (Basel,
Switzerland) [347, 348] and several phase-I trials have been
completed (Meiji Seika: NCT02134834; Roche:
NCT02975388, NCT03182504), as well as two phase-I
trials in combination with meropenem (66) (Roche:
NCT02972255, NCT03174795). Nacubactam (65) is still

2 https://www.empr.com/home/news/drugs-in-the-pipeline/fda-panel-
in-favor-of-sulbactam-durlobactam-for-acinetobacter-infections/
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listed as OP0595 on Meiji Seika’s latest pipeline [349],
while Fedora’s website indicates that the combination is
available for licensing [350].

Xeruborbactam (67) (QPX7728; IV) is a bicyclic boronate
BLI [333] (new class) being developed by Qpex Biopharma
(San Diego, CA, USA) that displays broad spectrum β-
lactamase inhibition, including against class B and class D
enzymes [351–353], as well as some intrinsic G-ve anti-
bacterial activity [354]. An IV administered combination of 67
and an undisclosed BL (QPX2014) has completed two phase-I
trials (NCT04380207 and NCT05072444) with an aim to treat
serious drug resistant Acinetobacter, Pseudomonas and
Enterobacterales infections. An orally administered xer-
uborbactam prodrug, QPX7831 (68) [355] (po), completed a
phase-I trial (NCT04578873) in August 2022 and there are
plans to use 68 in combination with an undisclosed oral BL
(QPX2015) to treat ESBLs and carbapenem-resistant Enter-
obacterales (CRE) infections.

A combination of the DBO-type BLI ETX0282 (69) (po)
and the cephalosporin cefpodoxime proxetil (70), collec-
tively called ETX0282CPDP, was evaluated in a phase-I
trial that finished in September 2019 (NCT03491748) by
Entasis Therapeutics (Waltham, MA, USA), who are now a
wholly owned subsidiary of Innoviva (Burlingame, CA,
USA). Both ETX0282 (69) and cefpodoxime proxetil (70)
are esterase-cleavable prodrugs, of ETX1317 (71) and cef-
podoxime (72) respectively, and the combination is being
developed to treat multidrug resistant and CRE infections
[356, 357]. ETX1317 (71) has an (R)-2-(N-oxy)-2-fluor-
oacetic acid unit in place of the N-oxy-sulfonic acid group
present in other DBOs and displays some innate G-ve
activity, in addition to BLI activity [356, 357].

A ledaborbactam etzadroxil (73) (VNRX-7145) + cef-
tibuten (74) combination (po) [358] is being developed by
VenatoRx Pharmaceuticals (Malvern, PA, USA). This
combination is currently being evaluated in two phase-I
trials (NCT05527834 and NCT05488678) and has pre-
viously completed two other phase-I trials (NCT04243863
and NCT04877379). Ledaborbactam etzadroxil (73) is an
esterase-cleavable prodrug of the bicyclic boronate-type
BLI (new class [333]) of ledaborbactam (75) (VNRX-5236)
[358], while 74 is a third-generation cephalosporin first
approved in 1995. The ledaborbactam etzadroxil (73) +
ceftibuten (74) combination is active against clinically-
derived Enterobacterales that express ESBLs and serine
carbapenemases [359–361].

A ternary combination therapy combining funobactam (76)
(XNW-4107) + imipenem (77) + cilastatin (78) (IV) is being
developed by Suzhou Sinovent Pharmaceuticals (Sinovent)
(Suzhou, People’s Republic of China). Funobactam (76) is a
DBO-type BLI [362], while imipenem (77) is a carbapenem-
type BL that was approved in combination with cilastatin (78)
in 1985, as well as in combination with the DBO relebactam

and 78 in 2019 [363]. Cilastin (78) is a renal dehydropeptidase
inhibitor that reduces the rate of 77 metabolism. Funobactam
(76) has completed two phase-I trials (NCT04482569,
NCT04802863) and two phase-I trials are ongoing
(NCT04801043, NCT04787562). Two phase-III trials have
been announced that will evaluate the funobactam (76) +
imipenem (77) + cilastatin (78) combination against cUTI
(NCT05204368) and HABP/VABP (NCT05204563).

CTB+AVP (PF-07612577; po) is a combination of the
cephalosporin ceftibuten (74) (PF-06264006) and the DBO-
type BLI avibactam (80) prodrug, AVP (79) (PF-07338233,
ARX-006, ARX-1796), under development by Pfizer (New
York, NY, USA). CTB+AVP is being evaluated in a phase-I
trial (NCT05554237), which started in October 2022. Avi-
bactam (80) in combination with ceftazidime (Avycaz) was
first approved in 2015 by the US FDA and is used to treat cIAI
and cUTI [364]. AVP (79) was first developed by Arixa
Pharmaceuticals (Palo Alto, CA, USA) [365], who were
acquired by Pfizer in October 2020 [366], and a prior phase-I
trial (NCT03931876) had already been completed.

Compounds discontinued from clinical
development

Compounds and BL/BLI combinations that have been dis-
continued from clinical development or appear to have had
their development halted since the 2019 review [25] are
listed in Table 7 with notes indicating any known reasons
for their failure or lack of progress.

Analysis of compounds undergoing clinical
trials

Numbers of compounds undergoing clinical
evaluation and their source derivation

There were 62 antibacterial clinical candidates under clin-
ical investigation (Figs. 14 and 15) on 31 December 2022
— ten BL/BLI inhibitor combinations and 52 small mole-
cules, mammalian-derived peptides, and a direct acting
polymer. Five of the 62 are non-traditional antibacterials
that target virulence (fluorothyazinone (40), GSK3882347
and ALS4), resistance (BVL-GSK098 (58)) and host
inflammation (dovramilast (42)) (Tables 4 and 5, Figs. 7
and 10). Of the ten BL/BLI combinations, one is in NDA/
MAA (Table 6, Fig. 11), three are in phase-III (Table 6,
Fig. 12) and six are in phase-I (Table 6, Fig. 13). Of the
remaining 52 compounds, one is in NDA/MAA (Table 3,
Fig. 3), six are in phase-III (Table 3, Fig. 4), 25 are in
phase-II (Table 4, Figs. 5–7) and 20 are in phase-I (Table 5,
Figs. 8–10). The source derivation of the 62 compounds
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was divided into 41 that were synthetically derived (S), 17
that were NP derived (NP), and four that were protein/
mammalian peptide derived (P) (Fig. 14).

While there was a similar number of compounds in the
different development phases in 2011, 2013 and 2015
analyses (except for a reduced number in phase-III trials in
2011 (6) compared to 2013 (16) and 2015 (15)), the number
in phase-I trials increased to 22 in 2019 [23] from an
average of 12 compounds in 2011-2015 [24–26], and this
was even higher at 26 in 2022 (Fig. 15). The number of
compounds in phase-II also increased (from 18 in 2019 to
25 in 2022), reflecting the successful progression of several
of the 2019 phase-I candidates and the entry of new anti-
bacterials. At least 18 of the 26 phase-I compounds target
G-ve bacteria (11 traditional compounds, one anti-virulence
and six BLI combinations), with four of these also pos-
sessing G+ve activity, while there are an additional eight
with G+ve only activity (six against TB and two against
MRSA). While the overall numbers are still low compared
to other therapeutic disease indications, the clinical pipeline
is now starting to resemble the more traditional progression

of attrition, rather than the flat or inverse progressions seen
in 2011 [26], 2013 [25] and 2015 [24], and this likely
reflects the success of push incentives driving innovative
antibiotic discovery [6–10].

New antibacterial pharmacophore analysis

A pharmacophore is the common subunit of active molecules
that interact with biological targets. It is crucial to develop
new antibacterial drugs with new MoA and/or pharmaco-
phores to slow down drug resistance and to potentially allow
the identification of new combination therapies. This is also
why there is considerable excitement around the potential of
non-traditional antibacterials, along with the yet-to-be-proven
hypothesis that some modalities, such as antivirulence stra-
tegies, will not lead to resistance since bacterial survival is
not directly targeted [17, 18, 20, 21].

In this review, new pharmacophores not previously
found in human antibacterial drugs have been analyzed as a
measure of antibacterial structure innovation (Table 8). In
Table 8, compounds with new MoA not previously found in
previously approved antibacterial drugs are underlined. The
MoA of most traditional small molecule antibacterial drugs
can be categorized into four major ‘macro’ level classes:
cell wall, protein synthesis, DNA synthesis, and RNA
synthesis inhibitors [367]. There are 34 different com-
pounds — 15 in phase-I, 15 in phase-II and 4 in phase-III/
NDA (Fig. 16) — and this total is significantly higher than
identified in previous reviews: 11 in 2011 [26], 17 in 2013
[25], 15 in 2015 [24] and 19 in 2019 [23] (Fig. 17). Twenty-
six of these compounds target the well-established ‘macro’
targets: cell wall (17), DNA (6) and protein synthesis
inhibition (3). There are no novel RNA synthesis inhibitors
in clinical development. Since the 2019 review [23], the
boronate BLI class has expanded with the bicyclic bor-
onates class, which includes taniborbactam (60), xer-
uborbactam (65) and ledaborbactam etzadroxil (71), now
considered to be a new class [21, 22].
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Existing antibacterial classes that inhibit the bacterial cell
envelope include the BL, glycopeptide, polymyxin, dapto-
mycin (lipopeptide), fosfomycin, and cycloserine classes.
The new cell envelope acting antibacterials inhibit several
different targets (LptD: murepavadin (49), FabI: afabicin
(21), 3 × DprE: BTZ-043 (34) and macozinone (53), qua-
bodepistat (35) and TBA-7371 (37), and FtsZ: TXA709
(62)) and six perturb bacterial membranes through less
defined mechanisms (exeporfinium (17), cannabidiol (18),

Recce-347, and the three cationic peptides, peceleganan
(23), PLG0206 (47) and PL-18 (48)) (Table 8). Although
the structure of RG6319 has not been disclosed, it is likely
to be an arylomycin derivative that inhibits E. coli Type
1 signal peptidase, which is a key enzyme in transporting
enzymes across the cytoplasmic membrane to the outer cell
wall [248].

The (fluoro)quinolone class are DNA synthesis inhibitors
(DNA gyrase GyrA and topoisomerase IV parC [201]) that

Table 8 New antibacterial pharmacophores, separated into major MoA classes, including compound name, phase, antibacterial class, lead source,
activity, MoA and administration

Name – phase Class (lead source) Mode of actiona (target) - administration

taniborbactam (62) – III bicyclic bornonate (S) cell wall (BLIs) – IV

xeruborbactam (67) – I bicyclic bornonate (S) cell wall (BLIs) – IV and po (prodrug)

ledaborbactam etzadroxil (73) – I bicyclic bornonate (S) cell wall (BLIs) – po (prodrug)

afabicin (21) – II benzofuran naphthyridine (S) cell wall, fatty acid biosynthesis (FabI) – IV and po (prodrug)

quabodepistat (35) – II 3,4-dihydrocarbostyril (S) cell wall (DprE1) – po

BTZ-043 (34) – II benzothiazinone (BTZ) (S) cell wall (DprE1) – po

macozinone (53) – I benzothiazinone (BTZ) (S) cell wall (DprE1) – po

TBA-7371 (37) – I azaindole (S) cell wall (DprE1) – po

TXA709 (50) – I FtsZ benzamide (S) cell wall (FtsZ) – po (prodrug)

murepavadin (49) – I “protegrin” (P) cell wall (LptD) – IV & inhalation

RG6319 – I “arylomycin”b (NP) cell wall, protein transport (SPase 1) – not disclosed

exeporfinium (17) – II porphyrin (NP) cell wall/membrane perturbation – topical

cannabidiol (18) – II cannabidiol (NP) cell wall/membrane perturbation – topical

peceleganan (23) - II cationic peptide (P) cell wall/membrane perturbation – topical

PLG0206 (47) – I cationic peptide (P) cell wall/membrane perturbation – topical/IV

PL-18 (48) – I cationic peptide (P) cell wall/membrane perturbation – topical

Recce-347 – I polymer (S) cell wall/membrane perturbation – topical/IV

gepotidacin (10) – III triazaacenaphthylene (S) DNA (GyrA) – IV/po

zoliflodacin (11) – III spiropyrimidinetrione (S) DNA (GyrB) – po

MGB-BP-3 (16) – II distamycin (NP) DNA (minor groove binding) – po topical

ibezapolstat (27) – II dichlorobenzyl guanine (S) DNA (DNA polymerase IIIC) – po topical

fobrepodacin (32) – II “ethyl urea benzimidazole” (S) DNA (GyrB and ParE) – po (prodrug)

BWC0977 (52) – I “oxazolidinone containing NBTI” (S) DNA (DNA gyrase and topoisomerase IV) - I and po

epetraborole (13) – II/III oxaborole (S) protein synthesis (leucyl-tRNA synthetase) – po

GSK3036656 (36) – II oxaborole (S) protein synthesis (leucyl-tRNA synthetase) – po

CRS3123 (28) – II “diaryldiamine” (S) protein synthesis (methionyl-tRNA synthetase) – po topical

Antibacterials with other MoA

telacebec (31) – II imidazo[1,2-a]pyridine amide (S) oxidative phosphorylation (respiratory complex bc1) – po

GSK2556286 (57) – I “uracil aryloxypiperidine” (S) cholesterol catabolism (adenylyl cyclase Rv1625c) – po

RG6006 – I macrocyclic peptide (S) not disclosed - IV

dovramilast (42) – II “3-oxo-1H-isoindol-4-yl” (S) anti-inflammatory (PDE4 inhibitor) – po

fluorothyazinone (40) – II thyazinone (S) antivirulence (type III secretion system) – po

GSK3882347 – I mannose-derived (S) antivirulence (FimH antagonist) – po

ALS4 – I not disclosed (S) antivirulence (4,4ʹ-diapophytoene desaturase, CrtN) – po

BVL-GSK098 (58) – I spiroisoxazoline (S) resistance reversal (inactivation of TetR-like repressor) - po

aNew MoA are Underlined
bLikely structure class
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are routinely used in clinical practice, while novobiocin,
which is a DNA gyrase GyrB and topoisomerase IV ParE
inhibitor, was briefly used as an antibacterial over 50 years
ago [201, 368]. BWC0977 (52) belongs to a new anti-
bacterial class and equally inhibits both DNA gyrase GyrA
and topoisomerase IV. Fobrepodacin (32) is an ‘ethyl urea
benzimidazole’ that also binds to both GyrB and ParE,
gepotidacin (10) inhibits GyrA at a different binding site to
the quinolones, and zoliflodacin (11) inhibits GyrB. Ibeza-
polstat (27) is the first member of the dichlorobenzyl gua-
nine class that inhibits DNA polymerase IIIC, while MGB-
BP-3 (16) is a DNA minor groove binder.

Bacterial protein synthesis inhibition can be caused by
several compound classes including macrolides, aminogly-
cosides, tetracyclines, lincosamides, chloramphenicol, oxa-
zolidinones, pleuromutilins and fusidic acid. There are two

oxaborole-type leucine tRNA synthetase (LeuRS) inhibi-
tors, epetraborole (13) and GSK3036656 (52), and one
methionyl-tRNA synthetase inhibitor, CRS3123 (28), in
clinical trials. The only marketed inhibitor of a tRNA syn-
thetase is mupirocin, which targets isoleucyl-tRNA
synthetase.

There are two direct-acting traditional and five non-
traditional antibacterial compounds with new mechanisms.
Telacebec (31) is an inhibitor of the mycobacterial
respiratory cytochrome bc1 complex [185, 186, 369].
Inhibition of bacterial respiratory systems is an emerging
MoA [369, 370] with three bedaquiline analogs, sudapyr-
idine (38), TBAJ-876 (55) and TBAJ-587 (56) that are also
in clinical development. GSK2556286 (57) was recently
disclosed to be an adenylyl cyclase Rv1625c agonist,
which interferes with cholesterol catabolism and reduces
the levels of this critical carbon source [304]. RG6006 is a
new antibacterial class but there is only limited public
information available about the structure and MoA. There
are three antivirulence compounds that employ totally
different anti-virulence mechanisms: fluorothyazinone (40)
inhibits the G-ve type III secretion system, GSK3882347
inhibits the binding of E. coli to host cell walls via FimH
and ALS4 inhibits 4,4ʹ-diapophytoene desaturase (CrtN),
which is an enzyme involved in the biosynthesis of sta-
phyloxanthin. Finally, BVL-GSK098 (58) inactivates the
TetR-like repressor, which reduces resistance to the TB
drug ethionamide (59) and rescues its activity, which is
conceptually similar to how BLIs restore the activity of BL
antibiotics.

Administration analysis

The administration routes (po, oral; IV/po, intravenous oral
switch; IV, intravenous; IV/topical, IV and topical; po
topical, CDI oral; topical; inhalation; n/d, not disclosed) of
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the small molecule antibacterial compounds under clinical
development were analyzed by development phase (Fig. S1)
and lead source (Fig. S1). Oral administration predominates
and 19 of the 30 (~63%) are being developed against
mycobacteria, which is pivotal as anti-TB drug combina-
tions are taken for multiple months and are often adminis-
tered in countries with limited capacity to deliver IV
treatments. The second highest category is IV administra-
tion with 15, while there are four candidates that can be
used both IV and po and two for both IV and topical. This
IV/oral switch strategy is a competitive advantage as it can
be implemented when patients move from hospital-based IV
administration to oral administration in wards or at home.
Four candidates are being trialed using the po topical
administration route, which is used to treat gastrointestinal
infections, such as C. difficile and H. pylori. For these
infections, drugs are usually orally administered, but most
are not significantly systemically absorbed, which reduces
the potential for toxicity; however, one of the CDI clinical
candidates, DNV-3837 (25) is being investigated using IV
administration. There are four topically-only administered
candidates, while murepavadin (49) is being trialed with
inhaled administration to treat P. aeruginosa infections in
the lungs of cystic fibrosis patients. This is being under-
taken to more efficiently deliver 49 into the lungs, but it
may also ameliorate kidney toxicity that was observed in a
prior nosocomial pneumonia trial [273].

Conclusion and outlook

The shape of the antibacterial pipeline has changed since
our first analysis in 2011 [26]. At the front-end of the
pipeline, there are now more than double the number of
phase-I candidates (26) compared to 11 in 2015 [24]
(Fig. 15). Funding initiatives have also helped to boost the
number of phase-II (25) compounds since 2019 (18)
(Fig. 15). Encouragingly, 16/26 (62%) of the compounds in
phase-I and 14/25 (56%) in phase-II contain new pharma-
cophores (Figs. 16 and 17), with some also having new
MoA (Table 8). Small molecule non-traditional antibacterial
candidates are also starting to move through the pipeline
with five in active development: fluorothyazinone (40),
dovramilast (42), BVL-GSK098 (58), GSK3882347 and
ALS4. Due to the increasing number of compounds with
novel pharmacophores and targets in the pipeline (Table 8,
Figs. 16 and 17), it is more likely that novel antibacterial
drug classes will enter the clinic in the next few years,
which is preferable to just expanding the pool of ‘me-too’
antibiotics. However, despite these early stage improve-
ments, it is sobering to note that the overall antibacterial
pipeline is still sparse compared to other therapeutic indi-
cations such as oncology (2,335 clinical trials in 2021

[371]) and even COVID-19 vaccines (180 in the pipeline in
February 2023 [372]).

In contrast to the early-stage pipeline, the late-stage
pipeline is still experiencing issues. There were only two
new small molecule antibacterial drugs first approved
between 2020 and 2022 (Table 1, Fig. 2): the fluor-
oquinolone levonadifloxacin (1) and its prodrug 2 in India
in 2020 and the oxazolidinone contezolid (4) in China in
2021. There was also one ‘non-traditional’ live biother-
apeutic product, Rebyota, approved in the USA in 2022
(Table 2). The last first-in-class small molecule approval
was the anti-TB diarylquinoline bedaquiline in 2012.
However, this could change, if the current phase-III can-
didates, gepotidacin (10), zoliflodacin (11) and epetraborole
(13) (Table 3, Fig. 4), all of which have new pharmaco-
phores, were granted approval to treat gonorrhea and G-ve
bacteria, gonorrhea, and M. avium complex (MAC) infec-
tions respectively. A future approval of the durlobactam
(60) + sulbactam (61) combination for the treatment of A.
baumannii-calcoaceticus (ABC) complex infections would
also be a welcome addition to the antibacterial arma-
mentarium. There has also been a steady but small decline
in the number of phase-III candidates from 2013 to 2022
(Fig. 15). It will be critical to monitor how many of the
phase-I and -II candidates, especially the compounds with
new pharmacophores, move into Phase-III and beyond in
the next few years.

In addition to the difficulty in identifying novel lead
compounds suitable for antibacterial drug development, the
ability to secure funding for phase-III trials and NDA/
MAAs, as well as the capacity to generate adequate revenue
to get positive net returns on investment for marketed
antibacterial drugs [2–5], have been major obstacles to
antibacterial drug development. Hopefully funding from
organizations such as the AMR Action Fund [9, 10] will
help to ameliorate some of these funding issues, while the
successful implementation of pull initiatives should help to
improve financial returns [11–16]. Another welcome addi-
tion has been the US FDA’s Limited Population Pathway
for Antibacterial and Antifungal Drugs (LPAD) pathway
that provides the potential for smaller, shorter, or fewer
clinical trials (at least two phase-III trials are usually
required) if the antibacterial drug candidate is “intended to
treat a serious or life-threatening infection in a limited
population of patients with unmet needs” [373]. However,
the approved drug then carries a label restricting its use,
which could limit future sales.

At least 19/26 (73%) phase-I compounds target G-ve
bacteria (12 traditional compounds, one anti-virulence and
six BL/BLI combinations), with four of these also posses-
sing anti-G+ve activity. The high percentage of G-ve can-
didates being developed mirrors the clinical need and the
recent focus of most funding schemes; however, the
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addition of G+ve activity to the 2022/23 CARB-X funding
calls reflects the high mortality observed for global G+ve
resistant infections in 2019 [1]. Only six of these 17 tradi-
tional G-ve antibacterial candidates are administered orally,
with four of these being BL/BLI prodrugs. Although NPs
have traditionally been the main source of novel anti-
bacterials, 23 of the 34 (68%) of the compounds with new
antibacterial pharmacophores were synthetically derived.
There are also a substantial number of antitubercular drugs
(TB and NTM) in the pipeline (19/62 (31%); one in phase-
III, 12 in phase-II, and six in phase-I), showing the success
of targeted funding for neglected diseases through organi-
zations such as the TB Alliance (New York, NY, USA) and
the Bill & Melinda Gates Foundation (Seattle, WA, USA).

In conclusion, despite the encouraging trends in phase-I
and -II antibacterial drug candidates and plans to address
issues with the late-stage pipeline, it is not the time to relax
the urgency to continue to stimulate further antibacterial
drug discovery and development.
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