Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

p-Terphenyl glucosides from the culture broth of Phlebiopsis castanea

A Correction to this article was published on 26 May 2023

This article has been updated

Abstract

A new p-terphenyl derivative, hydroxystrepantibin D (1), was isolated along with two known p-terphenyls (2 and 3) from the culture broth of Phlebiopsis castanea. These compounds were isolated using silica gel column chromatography, reversed-phase medium-pressure liquid chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Their structures were determined based on spectroscopic methods. These compounds exhibited free radical scavenging activities with IC50 values in the range from 22.2 to 158.4 μM against 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical and in the range from 161.1 to 356.1 μM against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Change history

References

  1. Wang D, Wang Y, Ouyang Y, Fu P, Zhu W. Cytotoxic p-terphenyls from a marine-derived Nocardiopsis species. J Nat Prod. 2019;82:3504–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lu DD, Ren JW, Du QQ, Song YJ, Lin SQ, Li X, et al. p-Terphenyls and actinomycins from a Streptomyces sp. associated with the larva of mud dauber wasp. Nat Prod Res. 2021;35:1869–73.

    Article  CAS  PubMed  Google Scholar 

  3. Li W, Li XB, Lou HX. Structural and biological diversity of natural p-terphenyls. J Asian Nat Prod Res. 2018;20:1–13.

    Article  PubMed  Google Scholar 

  4. Guo H, Hu H, Liu S, Liu X, Zhou Y, Che Y. Bioactive p-terphenyl derivatives from a Cordyceps-colonizing isolate of Gliocladium sp. J Nat Prod. 2007;70:1519–21.

    Article  CAS  PubMed  Google Scholar 

  5. Lee IK, Yun BS, Kim JP, Ryoo IJ, Kim YH, Yoo ID. Neuroprotective activity of p-terphenyl leucomentins from the mushroom Paxillus panuoides. Biosci Biotechnol Biochem. 2003;67:1813–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hwang BS, Lee IK, Yun BS. New p-terphenyls from the fruiting bodies of Pseudomerulius curtisii and their antioxidant activity. J Antibiot. 2016;69:400–2.

    Article  CAS  Google Scholar 

  7. Lee IK, Jung JY, Kim YS, Rhee MH, Yun BS. p-Terphenyls from the fruiting bodies of Paxillus curtisii and their antioxidant properties. Bioorg Med Chem. 2009;17:4674–80.

    Article  CAS  PubMed  Google Scholar 

  8. Li W, Gao W, Zhang M, Li YL, Li L, Li XB, et al. p-Terphenyl derivatives from the endolichenic fungus Floricola striata. J Nat Prod. 2016;79:2188–94.

    Article  CAS  PubMed  Google Scholar 

  9. Belofsky GN, Gloer KB, Gloer JB, Wicklow DT, Dowd PF. New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium raistrickii. J Nat Prod. 1998;61:1115–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kamruzzaman SM, Yayeh T, Ji HD, Park JY, Kwon YS, Lee IK, et al. p-Terphenyl curtisian E inhibits in vitro platelet aggregation via cAMP elevation and VASP phosphorylation. Vasc Pharm. 2013;59:83–89.

    Article  CAS  Google Scholar 

  11. Wang SM, Han JJ, Ma K, Jin T, Bao L, Pei YF, et al. New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 2014;98:149–55.

    Article  CAS  PubMed  Google Scholar 

  12. Li T, Le Gao J, Huang JH, Gu L, Zou J, Wu XJ. Phlebiopsis xuefengensis sp. nov. from Gastrodia elata (Orchidaceae) in Hunan Province, Southern China. S Afr J Bot. 2021;142:299–304.

    Article  CAS  Google Scholar 

  13. Chen CC, Wu SH, Chen CY. Four species of polyporoid fungi newly recorded from Taiwan. Mycotaxon 2018;133:45–54.

    Article  Google Scholar 

  14. Kälvö D, Menkis A, Broberg A. Secondary metabolites from the root rot biocontrol fungus Phlebiopsis gigantea. Molecules 2018;23:1417.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meng Q, Yang C, Wang M, Yuan J, Shi Z, Zhang Y, et al. Chemical constituents of fungus F03 belonging to Basidiomycota. Pak J Pharm Sci. 2020;33:1543–6.

    CAS  PubMed  Google Scholar 

  16. Kim JY, Woo EE, Ha LS, Ki DW, Lee IK, Yun BS. Three new meroterpenoids from culture broth of Perenniporia medulla-panis and their antioxidant activities. J Antibiot. 2019;72:625–28.

    Article  CAS  Google Scholar 

  17. Wu P, Gao H, Li ZH, Liu ZQ. Two new triterpene saponins from the roots of ilex pubescens. Phytochem Lett. 2015;12:17–21.

    Article  CAS  Google Scholar 

  18. Yamazoe A, Hayashi KI, Kuboki A, Ohira S, Nozaki H. The isolation, structural determination, and total synthesis of terfestatin A, a novel auxin signaling inhibitor from Streptomyces sp. Tetrahedron Lett. 2004;45:8359–62.

    Article  CAS  Google Scholar 

  19. Yamazoe A, Hayashi KI, Kepinski S, Leyser O, Nozaki H. Characterization of terfestatin A, a new specific inhibitor for auxin signaling. Plant Physiol. 2005;139:779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim JY, Ki DW, Lee YJ, Ha LS, Woo EE, Lee IK, et al. Consoramides A–C, New Zwitterionic Alkaloids from the Fungus Irpex consors. Mycobiology 2021;49:434–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee IK, Kim SE, Yeom JH, Ki DW, Lee MS, Song JG, et al. Daldinan A, a novel isoindolinone antioxidant from the ascomycete Daldinia concentrica. J Antibiot. 2012;65:95–97.

    Article  CAS  Google Scholar 

  22. Ki DW, Kim DW, Hwang BS, Lee SW, Seok SJ, Lee IK, et al. New antioxidant sesquiterpenes from a culture broth of Coprinus echinosporus. J Antibiot. 2015;68:351–3.

    Article  CAS  Google Scholar 

  23. Kim JY, Woo E, Ha LS, Kim YH, Lee IK, Yun BS. Oregonensins A and B, new meroterpenoids from the culture broth of Ganoderma oregonense and their antioxidant activity. J Antibiot. 2020;73:112–5.

    Article  CAS  Google Scholar 

  24. Kim JY, Woo E, Lee IK, Yun BS. New antioxidants from the culture broth of Hericium coralloides. J Antibiot. 2018;71:822–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Ji-Young Oh, Center for University-wide Research Facilities (CURF) at Jeonbuk National University for performing NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Sik Yun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article originally published in Volume 76, pages 52-55 (2023), Figure 1 was incorrect.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, DC., Ki, DW., Kim, JY. et al. p-Terphenyl glucosides from the culture broth of Phlebiopsis castanea. J Antibiot 76, 52–55 (2023). https://doi.org/10.1038/s41429-022-00579-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00579-7

Search

Quick links