Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activity of singly and doubly modified derivatives of C20-epi-salinomycin against Staphylococcus strains

Abstract

Natural polyether ionophore salinomycin (Sal) has been widely used in veterinary medicine as an antibiotic effective in the treatment of coccidian protozoa and Gram-positive bacteria. Moreover, chemical modification of the Sal structure has been found to be a promising strategy to generate semisynthetic analogs with biological activity profiles improved relative to those of the native compound. In this context, we synthesized and thoroughly evaluated the antibacterial potential of a library of C1/C20 singly and doubly modified derivatives of C20-epi-salinomycin, that is, analogs of Sal with inversed stereochemistry at the C20 position. Among the synthesized analog structures, the most promising antibacterial active agents were those obtained via regioselective O-acylation of C20-epi-hydroxyl, particularly esters 7, 9, and 11. Such C20 singly modified compounds showed excellent inhibitory activity against planktonic staphylococci, both standard and clinical strains, and revealed potential in preventing the formation of bacterial biofilms. In combination with their non-genotoxic properties, these Sal derivatives represent attractive candidates for further antimicrobial drug development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1

References

  1. Gomes F, Teixeira P, Oliveira R. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: Old and new fighting strategies. Biofouling 2014;30:131–41.

    Article  CAS  Google Scholar 

  2. Isenman H, Fisher D. Advances in prevention and treatment of vancomycin-resistant Enterococcus infection. Curr Opin Infect Dis. 2016;29:577–82.

    Article  CAS  Google Scholar 

  3. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA et al. Carbapenemase-producing organisms: A global scourge. Clin Infect Dis. 2018;66:1290–7.

    Article  CAS  Google Scholar 

  4. Donlan R. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277–81.

    Article  CAS  Google Scholar 

  5. Götz F. Staphylococcus and biofilms. Mol Microbiol. 2002;43:1367–78.

    Article  Google Scholar 

  6. Miyazaki Y, Shibuya M, Sugawara H, Kawaguchi O, Hirsoe C. Salinomycin, a new polyether antibiotic. J Antibiot. 1974;27:814–21.

    Article  CAS  Google Scholar 

  7. Antoszczak M, Rutkowski J, Huczyński A Structure and biological activity of polyether ionophores and their semisynthetic derivatives. In: Brahmachari G, editor. Bioactive natural products: Chemistry and biology. 1st ed. Wiley-VCH Verlag GmbH; 2015. p. 107–70.

  8. Antoszczak M, Huczyński A. Salinomycin and its derivatives – A new class of multiple-targeted “magic bullets”. Eur J Med Chem. 2019;176:208–27.

    Article  CAS  Google Scholar 

  9. Kevin DA II, Meujo DA, Hamann MT. Polyether ionophores: Broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Disco. 2009;4:109–46.

    Article  CAS  Google Scholar 

  10. Borgström B, Huang X, Pošta M, Hegardt C, Oredsson S, Strand D. Synthetic modification of salinomycin: selective O-acylation and biological evaluation. Chem Commun. 2013;49:9944–6.

    Article  Google Scholar 

  11. Borgström B, Huang X, Hegardt C, Oredsson S, Strand D. Structure-activity relationships in salinomycin: cytotoxicity and phenotype selectivity of semi-synthetic derivatives. Chem Eur J 2017;23:2077–83.

    Article  Google Scholar 

  12. Shi Q, Li Y, Bo S, Li X, Zhao P, Liu Q et al. Discovery of a 19F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells. Chem Commun. 2016;52:5136–9.

    Article  CAS  Google Scholar 

  13. Li Y, Shi Q, Shao J, Yuan Y, Yang Z, Chen S et al. Synthesis and biological evaluation of 20-epi-amino-20-deoxysalinomycin derivatives. Eur J Med Chem. 2018;148:279–290.

    Article  CAS  Google Scholar 

  14. Zhang W, Wu J, Li B, Xia J, Wu H, Wang L et al. Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Adv. 2016;6:41885–90.

    Article  CAS  Google Scholar 

  15. Li B, Wu J, Zhang W, Li Z, Chen G, Zhou Q et al. Synthesis and biological activity of salinomycin-hydroxamic acid conjugates. Bioorg Med Chem Lett. 2017;27:1624–6.

    Article  CAS  Google Scholar 

  16. Li B, Wu J, Tang L, Lian X, Li Z, Duan W et al. Synthesis and anti-tumor activity evaluation of salinomycin C20-O-alkyl/benzyl oxime derivatives. Org Biomol Chem. 2022;20:870–6.

    Article  CAS  Google Scholar 

  17. Huang M, Deng Z, Tian J, Liu T. Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. Eur J Med Chem. 2017;127:900–8.

    Article  CAS  Google Scholar 

  18. Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem. 2017;9:1025–33.

    Article  CAS  Google Scholar 

  19. Versini A, Colombeau L, Hienzsch A, Gaillet C, Retailleau P, Debieu S et al. Salinomycin derivatives kill breast cancer stem cells by lysosomal iron targeting. Chem Eur J 2020;26:7416–24.

    Article  CAS  Google Scholar 

  20. Czerwonka D, Müller S, Cañeque T, Colombeau L, Huczyński A, Antoszczak M et al. Expeditive synthesis of potent C20-epi-amino derivatives of salinomycin against cancer stem-like cells. ACS Org Inorg Au. 2022;2:214–21. https://doi.org/10.1021/acsorginorgau.1c00046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Antoszczak M, Müller S, Colombeau L, Cañeque T, Rodriguez R. Rapid access to ironomycin derivatives by click chemistry. ACS Org Inorg Au. 2022;2:222–8. https://doi.org/10.1021/acsorginorgau.1c00045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stefańska J, Antoszczak M, Stępień K, Bartoszcze M, Mirski T, Huczyński A. Tertiary amides of salinomycin: a new group of antibacterial agents against Bacillus anthracis and methicillin-resistant Staphylococcus epidermidis. Bioorg Med Chem Lett. 2015;25:2082–8.

    Article  Google Scholar 

  23. Antoszczak M, Maj E, Napiórkowska A, Stefańska J, Augustynowicz-Kopeć E, Wietrzyk J et al. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides. Molecules 2014;19:19435–59.

    Article  Google Scholar 

  24. Steverding D, Antoszczak M, Huczyński A. In vitro activity of salinomycin and monensin derivatives against Trypanosoma brucei. Parasites Vectors. 2016;9:409.

    Article  Google Scholar 

  25. Sulik M, Stępień K, Stefańska J, Huczyński A, Antoszczak M. Antibacterial activity of singly and doubly modified salinomycin derivatives. Bioorg Med Chem Lett. 2020;30:127062.

    Article  CAS  Google Scholar 

  26. Czerwonka D, Mielczarek-Puta M, Antoszczak M, Cioch A, Struga M, Huczyński A. Evaluation of the anticancer activity of singly and doubly modified analogues of C20-epi-salinomycin. Eur J Pharm. 2021;908:174347.

    Article  CAS  Google Scholar 

  27. Czerwonka D, Barcelos Y, Steverding D, Cioch A, Huczyński A, Antoszczak M. Singly and doubly modified analogues of C20-epi-salinomycin: A new group of antiparasitic agents against Trypanosoma brucei. Eur J Med Chem. 2021;209:112900.

    Article  CAS  Google Scholar 

  28. Wayne PA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standards M07‒A11. Clinical and Laboratory Standards Institute; 2018.

  29. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I et al. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007;115:891–9.

    Article  Google Scholar 

  30. Kada T, Hirano K, Shirasu Y. Bacillus subtilis recassay test. In: de Sevres FE, Hollaender A, editors. Chemical mutagens. Plenum Press; 1980.

    Google Scholar 

  31. Sadaie Y, Kada T. Recombination-deficient mutants of Bacillus subtilis. J Bacteriol. 1976;125:489–500.

    Article  CAS  Google Scholar 

  32. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2:a000414.

    Article  Google Scholar 

  33. Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020;9:59.

    Article  CAS  Google Scholar 

  34. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3:a010306.

    Article  Google Scholar 

  35. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.

    Article  CAS  Google Scholar 

  36. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–22.

    Article  CAS  Google Scholar 

  37. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11:1034–43.

    Article  CAS  Google Scholar 

  38. Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X et al. Beyond risk: Bacterial biofilms and their regulating approaches. Front Microbiol. 2020;11:928.

    Article  Google Scholar 

  39. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS 2013;136:1–51.

    Article  Google Scholar 

Download references

Acknowledgements

The project was carried out using the infrastructure of the Centre for Preclinical Research and Technology financed by the European Union – European Regional Development Fund within the ‘Innovative Economy’ Operational Program for 2007–2013. DC wishes to acknowledge the scholarship no. POWR. 03.02.00-00-I026/16, co-financed by the European Union through the European Social Fund under the Operational Program Knowledge Education Development. DC also wishes to acknowledge the Polish Science Center (NCN) for the ETIUDA doctoral scholarship (2020/36/T/ST4/00041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Antoszczak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Czerwonka, D., Podsiad, M., Stefańska, J. et al. Activity of singly and doubly modified derivatives of C20-epi-salinomycin against Staphylococcus strains. J Antibiot 75, 445–453 (2022). https://doi.org/10.1038/s41429-022-00536-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00536-4

Search

Quick links