Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chrysomycin A inhibits the topoisomerase I of Mycobacterium tuberculosis

Abstract

Novel anti-tuberculosis drugs are essential to manage drug-resistant tuberculosis, caused by Mycobacterium tuberculosis. We recently reported the antimycobacterial activity of chrysomycin A in vitro and in infected macrophages. In this study, we report that it inhibits the growth of drug-resistant clinical strains of M. tuberculosis and acts in synergy with anti-TB drugs such as ethambutol, ciprofloxacin, and novobiocin. In pursuit of its mechanism of action, it was found that chrysomycin A is bactericidal and exerts this activity by interacting with DNA at specific sequences and by inhibiting the topoisomerase I activity of M. tuberculosis. It also exhibits weak inhibition of the DNA gyrase enzyme of the pathogen.

Highlights

  • Chrysomycin A inhibits the growth of susceptible, multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical strains of Mycobacterium tuberculosis.

  • It intercalates DNA at preferred sequences rather than randomly.

  • It inhibits mycobacterial topoisomerase I activity in vitro.

  • It also exhibits modest inhibition of mycobacterial DNA gyrase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strelitz F, Flon H, Asheshov INJJob. Chrysomycin: a new antibiotic substance for bacterial viruses. J Bacteriol. 1955;69:280.

    Article  CAS  Google Scholar 

  2. Jain SK, Pathania AS, Parshad R, Raina C, Ali A, Gupta AP, et al. Chrysomycins A–C, antileukemic naphthocoumarins from Streptomyces sporoverrucosus. RSC Adv. 2013;3:21046–53.

    Article  CAS  Google Scholar 

  3. Matson JA, Rose WC, Bush JA, Myllymaki R, Bradner WT, Doyle TW. Antitumor activity of chrysomycins M and V. J Antibiot. 1989;42:1446–8.

    Article  CAS  Google Scholar 

  4. Weiss U, Yoshihira K, Highet R, White R, Wei T. The chemistry of the antibiotics chrysomycin A and B antitumor activity of chrysomycin A. J Antibiot. 1982;35:1194–201.

    Article  CAS  Google Scholar 

  5. Wada S-i, Sawa R, Iwanami F, Nagayoshi M, Kubota Y, Iijima K, et al. Structures and biological activities of novel 4′-acetylated analogs of chrysomycins A and B. J Antibiot. 2017;70:1078–82.

    Article  CAS  Google Scholar 

  6. Muralikrishnan B, Dan VM, Vinodh J, Jamsheena V, Ramachandran R, Thomas S, et al. Anti-microbial activity of chrysomycin A produced by Streptomyces sp. against Mycobacterium tuberculosis. RSC Adv. 2017;7:36335–9.

    Article  CAS  Google Scholar 

  7. Wu F, Zhang J, Song F, Wang S, Guo H, Wei Q, et al. Chrysomycin A derivatives for the treatment of multi-drug-resistant tuberculosis. ACS Cent Sci. 2020;6:928–38.

    Article  CAS  Google Scholar 

  8. Greenstein M, Monji T, Yeung R, Maiese W, White R. Light-dependent activity of the antitumor antibiotics ravidomycin and desacetylravidomycin. Antimicrob Agents Chemother. 1986;29:861–6.

    Article  CAS  Google Scholar 

  9. Wei TT, Byrne KM, Warnick-Pickle D, Greenstein M. Studies on the mechanism of action of gilvocarcin V and chrysomycin A. J Antibiot. 1982;35:545–8.

    Article  CAS  Google Scholar 

  10. Caleffi-Ferracioli KR, Maltempe FG, Siqueira VLD, Cardoso RF. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis. 2013;93:660–3.

    Article  CAS  Google Scholar 

  11. Palomino J-C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46:2720–2.

    Article  CAS  Google Scholar 

  12. Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M. Studying non-covalent drug–DNA interactions. Arch Biochem biophysics. 2015;576:49–60.

    Article  Google Scholar 

  13. Husain MA, Ishqi HM, Sarwar T, Rehman SU, Tabish M. Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modelling approach. MedChemComm. 2017;8:1283–96.

    Article  CAS  Google Scholar 

  14. Sadeghi M, Bayat M, Cheraghi S, Yari K, Heydari R, Dehdashtian S, et al. Binding studies of the anti‐retroviral drug, efavirenz to calf thymus DNA using spectroscopic and voltammetric techniques. Luminescence. 2016;31:108–17.

    Article  CAS  Google Scholar 

  15. Chang Y-M, Chen CK-M, Hou M-H. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci. 2012;13:3394–413.

    Article  CAS  Google Scholar 

  16. Hampshire AJ, Fox KR. The effects of local DNA sequence on the interaction of ligands with their preferred binding sites. Biochimie. 2008;90:988–98.

    Article  CAS  Google Scholar 

  17. Zhu C, Liu Y, Hu L, Yang M, He Z-G. Molecular mechanism of the synergistic activity of ethambutol‘ and isoniazid against Mycobacterium tuberculosis. J Biol Chem. 2018;293:16741–50.

    Article  CAS  Google Scholar 

  18. Sirajuddin M, Ali S, Badshah A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B Biol. 2013;124:1–19.

    Article  CAS  Google Scholar 

  19. Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–25.

    Article  CAS  Google Scholar 

  20. Sikder D, Nagaraja V. Determination of the recognition sequence of Mycobacterium smegmatis topoisomerase I on mycobacterial genomic sequences. Nucleic Acids Res. 2000;28:1830–7.

    Article  CAS  Google Scholar 

  21. Van Dyke MW, Hertzberg RP, Dervan PB. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA. Fe (II). Proc Natl Acad Sci USA. 1982;79:5470–4.

    Article  Google Scholar 

  22. Trask D, Muller M. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proc Natl Acad Sci USA . 1988;85:1417–21.

    Article  CAS  Google Scholar 

  23. Ahmed W, Menon S, Godbole AA, Karthik PV, Nagaraja V. Conditional silencing of topoisomerase I gene of Mycobacterium tuberculosis validates its essentiality for cell survival. FEMS Microbiol Lett. 2014;353:116–23.

    Article  CAS  Google Scholar 

  24. Arjomandzadegan M, Sadrnia M, Titov L, Surkova L, Sarmadian H, Ghasemikhah R, et al. Transmission electron microscopy of XDR Mycobacterium tuberculosis isolates grown on high dose of ofloxacin. Sci Pharmaceutica. 2017;85:3.

    Article  Google Scholar 

  25. Shen LL, Pernet AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proc Natl Acad Sci USA. 1985;82:307–11.

    Article  CAS  Google Scholar 

  26. Godbole AA, Ahmed W, Bhat RS, Bradley EK, Ekins S, Nagaraja V. Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors. Antimicrob Agents Chemother. 2015;59:1549–57.

    Article  Google Scholar 

Download references

Acknowledgements

BM thanks the Council of Scientific Industrial Research, Govt. of India for a research fellowship and RAK thanks the Department of Biotechnology, Govt. of India for funding. We are grateful to Ms. Arthi R and Dr. Kana M Sureshan, School of Chemistry, Indian Institutes of Science Education and Research, Thiruvananthapuram, for their help in fluorescence spectrometry and circular dichroism studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralikrishnan, B., Edison, L.K., Dusthackeer, A. et al. Chrysomycin A inhibits the topoisomerase I of Mycobacterium tuberculosis. J Antibiot 75, 226–235 (2022). https://doi.org/10.1038/s41429-022-00503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-022-00503-z

Search

Quick links