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Abstract
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is an essential enzyme in the biosynthesis of Lipid A, an active
component of lipopolysaccharide (LPS), from UDP-3-O-acyl-N-acetylglicosamine. LPS is a major component of the cell
surface of Gram-negative bacteria. LPS is known to be one of causative factors of sepsis and has been associated with high
mortality in septic shock. TP0586532 is a novel non-hydroxamate LpxC enzyme inhibitor. In this study, we examined the
inhibitory effect of TP0586532 on the LPS release from Klebsiella pneumoniae both in vitro and in vivo. Our results
confirmed the inhibitory effect of TP0586532 on LPS release from the pathogenic bacterial species. On the other hand,
meropenem and ciprofloxacin increase the level of LPS release. Furthermore, the effects of TP0586532 on LPS release and
interleukin (IL)-6 production in the lung were determined using a murine model of pneumonia caused by K. pneumoniae. As
observed in the in vitro study, TP0586532 showed the marked inhibitory effect on LPS release in the lungs, whereas
meropenem- and ciprofloxacin-treated mice showed higher levels of LPS release and IL-6 production in the lungs as
compared to those in the lungs of vehicle-treated mice. Moreover, TP0586532 used in combination with meropenem and
ciprofloxacin attenuated the LPS release and IL-6 production induced by meropenem and ciprofloxacin in the lung. These
results indicate that the inhibitory effect of TP0586532 on LPS release from pathogenic bacteria might be of benefit in
patients with sepsis.

Introduction

Lipopolysaccharide (LPS) is considered as one of the major
factors involved in the pathophysiology of sepsis. Septic
shock caused by LPS is known to be associated with high
mortality rates [1]. LPS induces pro-inflammatory cytokine
responses, including of interleukin (IL)-6. IL-6 is one of the
most well-recognized causes of the excessive inflammatory
response in cases of sepsis [2]. High levels of IL-6 pro-
duction are known to be associated with a high risk of death
[3]. In addition, the serum levels of IL-6 were higher in

patients with septic shock than in those with sepsis [4].
Some antibiotics have been reported to induce an increase
of LPS release [5, 6], which might induce further IL-6
production and cause clinical deterioration in patients with
sepsis. In fact, some previous study referred the association
between administration of antibiotics and an increase in the
risk of mortality in patients with septic shock [7–9]. How-
ever, there are inadequate data to reach any definitive
conclusion concerning this matter.

Some drugs of the class of β-lactam antibiotics which
interfere with cell wall synthesis have been shown to induce
LPS release both in vitro and in vivo [5, 6, 10]. These
antibiotics have been shown to induce morphological
changes in pathogens [11]. Antibiotic-induced filamentation
of bacterial cells is known to be associated with higher
levels of LPS release [12]. These β-lactam antibiotics,
which are first-line therapeutic agents for severe infections,
including sepsis, are known to induce antibiotics-induced
LPS release and might potentially have adverse effects in
patients with sepsis [13].

UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC)
is a rate-limiting step in the biosynthetic pathway of lipid A,
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a component of LPS. LpxC inhibitors have been shown to
reduce the levels of LPS in the outer membranes of Gram-
negative bacteria. According to Fujiwara’s study, RC-01,
which is a hydroxamate LpxC inhibitor, has been shown to
reduce the LPS release and to attenuate antibiotic-induced
LPS release from Pseudomonas aeruginosa in vitro [14].
Furthermore, Lin et al. showed in their in vivo study, that an
LpxC inhibitor, which did not have the bacterial killing
effect against Acinetobacter baumannii in vitro, reduced the
LPS release and LPS-induced immune responses in the
serum in a murine model of infection caused by A. bau-
mannii [15]. They showed in their study that A. baumannii
exposed to LpxC inhibitors increase their susceptibility to
phagocytosis by macrophages. Bacteria are digested by
lysosomal enzymes during the process of phagocytosis [16].
Therefore, the levels of LPS released might be lower during
bacterial killing by phagocytosis than during bacterial kill-
ing by antibacterial drugs. Klebsiella pneumoniae is well
known as a causative pathogen of pneumonia and urinary
tract infections. K. pneumoniae has been reported to be the
third most common causative microorganism of sepsis in
patients admitted to intensive care units in Japan, following
methicillin-resistant Staphylococcus aureus and Escher-
ichia coli [17]. In addition, K. pneumoniae is the most
common carbapenem-resistant Enterobacteriaceae isolated
in the United States, accounting for half of the isolates, and
is a world threat [18]. TP0586532 (Fig. 1) is a novel non-
hydroxamate LpxC inhibitor which has been shown to have
a broad spectrum of antibacterial activity against
carbapenem-resistant Enterobacteriaceae and exert potent
efficacy in murine models of systemic infection, and
pneumonia caused by Gram-negative pathogens [19, 20].
To investigate the LPS release associated with the bacterial
killing activity of antimicrobial agents, the inhibitory effects
of TP0586532 on LPS release from K. pneumoniae, which
is killed by TP0586532, were examined in vitro and in vivo.
Furthermore, the degree of reduction of antibiotic-induced
LPS release and IL-6 production in the lungs treated with
TP0586532 in combination with antibiotics were deter-
mined using a murine model of pneumonia caused by K.
pneumoniae.

Materials and methods

Bacterial strains

K. pneumoniae 4124, a clinically isolated strain from spu-
tum in a Japanese hospital, was used in both the in vitro and
in vivo studies. Heart Infusion Agar (Nippon Becton
Dickinson Co., Ltd., Tokyo, Japan) and Mueller Hinton II
Broth (Nippon Becton Dickinson Co., Ltd.) were used for
the bacterial cultures.

Compounds

TP0586532 was synthesized by Taisho Pharmaceutical Co,
Ltd., (Saitama, Japan). The drug was dissolved in dimethyl
sulfoxide (for the in vitro studies) or 11 w/v%
sulfobutylether-β-cyclodextrin sodium salt (11 v/w% SBE-β-
CD, for the in vivo studies). Ceftazidime was purchased from
Sigma-Aldrich (St. Louis, MO). Ciprofloxacin was pur-
chased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). Meropenem was purchased from Sumitomo
Dainippon Pharma Co., Ltd. (Osaka, Japan) and U.S. Phar-
macopeial Convention (Rockville, MD). Cilastatin was pur-
chased from Sigma-Aldrich and AvaChem Scientific (San
Antonio, TX). Meropenem was combined with cilastatin at
ratio of 1:1 for the in vivo study. Ceftazidime was dissolved
in distilled water. Ciprofloxacin and meropenem were dis-
solved in distilled water (for in vitro studies) or saline (for the
in vivo studies). Cilastatin was dissolved in saline.

Determination of the minimum inhibitory
concentrations

The MICs were determined by two-fold microdilution in
broth according to the Clinical & Laboratory Standards
Institute (CLSI) standard [21].

In vitro LPS release study

K. pneumoniae 4124 was cultured to log phase in MHIIB
and suspended in MHIIB, so that the suspension contained
approximately 106 CFU ml−1. The cultures were exposed to
0.5-, 1-, and 2-fold of the MICs (0.5 MIC, 1 MIC, and 2
MIC) of the antibacterial agents. For the combined anti-
biotic testing, 1 MIC of meropenem, ciprofloxacin or cef-
tazidime was combined with 0.25 MIC, 0.5 MIC, and 1
MIC of TP0586532 or ciprofloxacin. The cultures were
incubated at 35 °C for 4 h. At 1, 2, and 4 h (for the single
antibiotic testing) or at 2 and 4 h (for the combined anti-
biotic testing) after the addition of antibacterial agents,
aliquots of cultures were inoculated on HIA for colony
counting. The amounts of LPS released from the bacteria
were measured using a LPS-specific Limulus amebocyte
lysate chromogenic endpoint assay (Endospecy, Seikagaku
Co., Tokyo, Japan). In order to remove the LPS associated

Fig. 1 The chemical structure of TP0586532
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with the bacteria from the cultures, the cultures were filtered
through a 0.45-μm filter, and the supernatants were used for
the assay. The amounts of LPS were determined by com-
parison with a standard curve run in the same experiment.
All experiments were performed in duplicate or more.

Animals

All experimental procedures, including the animal handling,
were conducted with the approval of the Institutional Ani-
mal Care and Use Committee of Taisho Pharmaceutical Co.,
Ltd., and were in accordance with the Guidelines for Proper
Conduct of Animal Experiments (Science Council of Japan,
2006). Four-week-old female ICR mice (SLC Japan, Shi-
zuoka, Japan) were used for all the in vivo experiments. The
mice were maintained in controlled temperature (23 °C ± 3 °
C) and humidity (50% ± 20%) conditions under a 12-h
light/dark cycle (lights on at 07:00 h). Food and water were
provided ad libitum to the animals.

Murine model of pneumonia

Mice anesthetized with ketamine-xylazine were injected intra-
nasally with 0.05ml of the K. pneumoniae 4124 suspension
(approximately 7 × 107 CFU/mouse). At 1.5, 3, and 6 h after
the bacterial inoculation, the mice (n= 6 in each treatment
group) were given a subcutaneous injection of a single dose of
TP0586532, meropenem/cilastatin, or ciprofloxacin at 100, 25,
or 3mg kg−1, respectively. These doses were designed to show
a similar bacterial killing capacity in the lung after treatment.
Meropenem/cilastatin and ciprofloxacin were combined with 1,
10, or 100mg kg−1 dose−1 of TP0586532. Control mice were
treated with placebo (11 v/w% SBE-β-CD) alone. At 3, 6, and
9 h after inoculation, lung samples were removed and homo-
genized with 1ml of saline using a Multi-beads Shocker (Yasui
Kikai, Osaka, Japan). For determination of the bacterial con-
centrations, the homogenates were diluted with saline and
plated on HIA. Viable cell counts of K. pneumoniae in the lung
were estimated by counting the bacterial colonies on the agar
medium. For the analyses of LPS and IL-6, the lung homo-
genates were centrifuged for 10min at 10,000 × g and filtered
through a 0.45-μm filter. The supernatants were frozen until the
analyses. The amounts of LPS in the lung supernatant samples
were measured as described above [15, 22]. The IL-6 levels in
the lung supernatant samples were measured by IL-6 mouse
Quantikine ELISA (R&D systems. Inc., Minneapolis, MN).
All sample concentrations were determined by comparison
with a standard curve run in the same experiment.

Statistical analysis

In vivo LPS and IL-6 levels were compared using Wilcoxon
test or Steel’s non-parametric multiple comparison test. *: p

< 0.05 and **: p < 0.01 values were considered as denoting
significance.

Results

TP0586532 reduced LPS release from K. pneumoniae
in vitro

The MICs of TP0586532, meropenem, ciprofloxacin, and
ceftazidime against K. pneumoniae 4124 used in this study
were 2, 0.03, 0.03, and 0.25 µg ml−1, respectively. The
efficacy of bacterial killing and inhibitory effect on LPS
release by TP0586532 for K. pneumoniae 4124 were
examined. The viable cell counts in the cultures and the
levels of LPS released into the culture supernatants at 1, 2,
and 4 h post-treatment are shown in Fig. 2. The viable cell
counts of K. pneumoniae 4124 increased logarithmically
until 4 h in the no agent group, while the counts in the
TP0586532-, meropenem-, and ciprofloxacin-treated groups
decreased in a concentration-dependent manner (Fig. 2a–c).
The level of LPS released into the culture supernatants in
the no agent group at 4 h was 4811 EUml−1. On the other
hand, the levels of LPS released into the culture super-
natants in the TP0586532-, meropenem-, ciprofloxacin-,
and ceftazidime-treated groups at 4 h were 58–225,
2837–10937, 1770–13106, and 4809–5321 EUml−1,
respectively (Fig. 2e–h). Thus, the level of LPS released
into the culture supernatant in the TP0586532-treated group
was lower than that in the no agent group (Fig. 2e), whereas
the levels of LPS released into the culture supernatants in
the meropenem-, ciprofloxacin-, and ceftazidime-treated
groups were comparable or higher than those in the no agent
group (Fig. 2f–h).

TP0586532 reduced LPS release in the lungs of a
murine model of pneumonia caused by K.
pneumoniae

Viable cell counts and the levels of LPS and IL-6 produc-
tion in the lungs of mice treated with antibacterial agents
were measured. The changes in the viable cell counts in the
lungs are shown in Fig. 3a. The viable cell counts in the
lungs of mice treated with TP0586532, meropenem/cilas-
tatin, or ciprofloxacin decreased by approximately 2 log in
comparison with those in the lungs of the vehicle-treated
mice at 6 and 9 h after the inoculation. Therefore,
TP0586532, meropenem/cilastatin and ciprofloxacin
showed equivalent efficacy of bacterial killing at each of the
tested doses in the murine model of pneumonia. The levels
of LPS released into the lungs are shown in Fig. 3b. The
levels of LPS released into the lungs of the vehicle-treated
mice increased over time until 9 h after the inoculation. On
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the other hand, the levels of LPS released into the lungs of
the mice treated with TP0586532 were significantly reduced
in comparison with those of the vehicle-treated mice at 6
and 9 h after the inoculation. Notably, the levels of LPS
released into the lungs of the mice treated with meropenem/
cilastatin were significantly higher than those in the lungs of
the vehicle-treated mice at 3, 6, and 9 h after the inocula-
tion. Similarly, the levels of LPS released into the lungs of
the mice treated with ciprofloxacin were also significantly
higher than those of the vehicle-treated mice at 3 and 9 h
after the inoculation. In addition, the levels of IL-6 in the
lungs of the mice treated with meropenem/cilastatin or
ciprofloxacin were increased as compared to those in the
lungs of the vehicle-treated mice at 6 h after the inoculation
(Fig. 3c), while there was no difference in the IL-6 levels in
the lungs between the TP0586532-treated and vehicle-
treated mice.

TP0586532 attenuated antibiotic-induced LPS
release from K. pneumoniae in vitro

Our study showed that monotherapy of meropenem or
ciprofloxacin increased the levels of LPS released into the
lungs of the treated mice, whereas monotherapy of
TP0586532 reduced the levels of LPS in the lungs of the
treated mice. Therefore, we evaluated whether combined
use of TP0586532 could reduce the induction of LPS
release by other antibiotics such as meropenem and

ciprofloxacin. First, the in vitro inhibitory effect of
TP0586532 on antibiotic-induced LPS release was exam-
ined (Fig. 4). Addition of TP0586532 along with mer-
openem, ciprofloxacin or ceftazidime reduced the viable cell
counts of K. pneumoniae 4124 to the same or greater degree
as compared to that observed with the addition of mer-
openem, ciprofloxacin, or ceftazidime alone (Fig. 4a–c).
The antibiotic-induced LPS release into the culture super-
natants was attenuated by combined treatment with
TP0586532 (Fig. 4e–g). The efficacy of addition of
TP0586532 was observed even at 0.25 MIC. On the other
hand, the amount of LPS released into the culture super-
natant following treatment with the combination of mer-
openem and ciprofloxacin was comparable to that following
treatment with meropenem alone (Fig. 4h).

TP0586532 attenuated antibiotic-induced LPS
release and IL-6 production in the lungs in a murine
model of pneumonia caused by K. pneumoniae

Viable cell counts and levels of LPS release and IL-6 pro-
duction in the lungs of mice treated with TP0586532 in
combination with meropenem/cilastatin or ciprofloxacin
were determined. The changes in the viable cell counts in
the lungs are shown in Fig. 5a. The viable cell counts in the
lungs of mice treated with meropenem/cilastatin or cipro-
floxacin alone or meropenem/cilastatin or ciprofloxacin in
combination with TP0586532 decreased by approximately

Fig. 2 Efficacy of bacterial killing and inhibitory effects on LPS
release in the cultures of K. pneumoniae 4124. Viable cell counts in the
cultures treated with TP0586532 (a), meropenem (b), ciprofloxacin (c),
and ceftazidime (d). LPS levels in the cultures treated with TP0586532

(e), meropenem (f), ciprofloxacin (g), and ceftazidime (h). Each
symbol represents the mean and SEM (n= 3–4). 0.5 MIC (□), 1 MIC
(♦), 2 MIC (○), and no agent (–)
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2 log in comparison with those in the vehicle-treated mice.
Therefore, the bacterial killing activities of all the treatments
were equivalent in the murine model of pneumonia. The
levels of LPS released into the lungs of the antibiotic-treated
mice are shown in Fig. 5b. Combined administration of
TP0586532 with meropenem/cilastatin or ciprofloxacin
markedly attenuated the LPS release induced by mer-
openem/cilastatin or ciprofloxacin alone. The attenuated

effect was observed at the doses of 10 and 100 mg kg−1

dose−1 of TP0586532 administered in combination with
meropenem/cilastatin or ciprofloxacin. Similar to the effect
on the antibiotic-induced LPS release, combined adminis-
tration of TP0586532 with meropenem/cilastatin or cipro-
floxacin also attenuated the amount of IL-6 produced into
the lungs (Fig. 5c). The effect on IL-6 production of com-
bined administration of TP0586532 with meropenem/

Fig. 3 Efficacy of bacterial
killing and inhibitory effects on
LPS release and IL-6 production
in the lungs in a murine model
of pneumonia caused by K.
pneumoniae 4124. Viable cell
counts (a), LPS levels (b), and IL-
6 levels (c) are shown. Each
symbol represents the mean and
SEM (n= 6). TP0586532 (100
mg kg−1 dose−1); MEM,
meropenem/cilastatin (25mg
kg−1 dose−1); CIP, ciprofloxacin
(3 mg kg−1 dose−1). Statistical
comparisons of LPS release and
IL-6 production were performed
by the Wilcoxon test (vs. vehicle
in the same time point, *:
p < 0.05, **: p < 0.01)
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cilastatin was observed even at the dose of 1 mg kg−1 dose−1

of TP0586532. These effects in the ciprofloxacin-treated
mice were observed in a dose-dependent manner from 1mg
kg−1 dose−1 of TP0586532.

Discussion

According to the WHO 2020 report [23], there were esti-
mated to be 49 million cases of sepsis in 2017, leading to
the sepsis-related death of 11 million people worldwide.
This was estimated approximately 20% of the world’s
annual mortality rate. The mortality rate for sepsis is very
high, with an estimated mortality rate of 26.7% for hospi-
talized patients treated for sepsis and 42.6% for patients in
intensive care units treated for sepsis [24]. In addition, the
WHO estimated that one in four sepsis cases in 2017
occurred in a hospital. In order to properly treat sepsis, it is
important to identify symptoms early and treat the under-
lying infection with empiric antibiotic therapy [25]. How-
ever, some antimicrobial agents have been reported to
increase the LPS release during bacterial killing activity [8].
In addition, it has also been reported that excessive immune
response caused of IL-6 induced by LPS might deteriorate
the pathogenesis of sepsis [9]. TP0586532, a non-

hydroxamate LpxC inhibitor, reduced the total LPS level
of E. coli in a concentration-dependent manner [20] and
thus are expected to inhibit LPS release during bacterial
killing activity. Therefore, we investigated the effects of
TP0586532 on LPS release during bacterial killing activity
and on IL-6 production in a murine model of pneumonia
caused by K. pneumoniae. Furthermore, we investigated the
effects of TP0586532 in combination with meropenem or
ciprofloxacin on LPS release and IL-6 production induced
by these antibiotics.

This study revealed that TP0586532 reduced the levels
of LPS released from K. pneumoniae both in vitro (Fig. 2)
and in vivo (Fig. 3). Furthermore, use of TP0586532 in
combination with meropenem or ciprofloxacin also atte-
nuated the antibiotic-induced LPS release both in vitro
(Fig. 4) and in vivo (Fig. 5). These effects were observed
even at low doses of TP0586532 where TP0586532
exhibited no antimicrobial activity. Meropenem and cefta-
zidime induced high levels of LPS release both in vitro and
in vivo, consistent with previous reports [6, 11]. In addition,
the present study also revealed that administration of
ciprofloxacin increased the levels of LPS released into the
lungs in the murine model of pneumonia. Ciprofloxacin has
been reported to induce bacterial filamentation [26] and LPS
release in vitro [27]. However, Kawai et al. reported that

Fig. 4 Efficacy of bacterial killing and inhibitory effects of TP0586532
in combination on LPS release induced by other antibiotics in the
cultures of K. pneumoniae 4124. Viable cell counts in the cultures
treated with meropenem plus TP0586532 (a), ciprofloxacin plus
TP0586532 (b), ceftazidime plus TP0586532 (c), and meropenem plus
ciprofloxacin (d). LPS levels in the cultures treated with meropenem
plus TP0586532 (e), ciprofloxacin plus TP0586532 (f), ceftazidime

plus TP0586532 (g), and meropenem plus ciprofloxacin (h). Each
symbol represents the mean and SEM (n= 3). Meropenem, cipro-
floxacin, or ceftazidime alone (□), combined with 0.25 MIC
TP0586532 or ciprofloxacin (♦), combined with 0.5 MIC TP0586532
or ciprofloxacin (○), combined with 1 MIC TP0586532 or cipro-
floxacin (▲), and no agent (–)
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Fig. 5 Efficacy of bacterial
killing and inhibitory effects of
TP0586532 in combination on
LPS release and IL-6 production
induced by other antibiotics in
the lungs of a murine model of
pneumonia caused by K.
pneumoniae 4124 at 6 h after
inoculation. Viable cell counts
(a), LPS levels (b), and IL-6
levels (c) are shown. Each
symbol represents the mean and
SEM (n= 6). MEM,
meropenem/cilastatin; CIP,
ciprofloxacin. Statistical
comparisons of LPS release and
IL-6 production were performed
by the Steel test (*: p < 0.05,
TP0586532 vs. vehicle,
meropenem/cilastatin plus
TP0586532 vs. meropenem/
cilastatin alone, ciprofloxacin
plus TP0586532 vs.
ciprofloxacin alone)
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ciprofloxacin reduced the levels of LPS and cytokines
released by the bacteria in a murine model of pneumonia
caused by K. pneumoniae [28]. The discrepant results
between their study and our study could due to differences
in the bacterial burden and/or timing of samplings. In the
study by Kawai et al., the lung levels of LPS in the
ciprofloxacin-treated mice were measured at 24 to 96 h after
the inoculation. At these time points, the viable cell counts
in the bronchoalveolar lavage fluid were 1 to 3 log10 CFU
ml−1. On the other hand, in our study, the measurements
were performed at 3, 6, and 9 h after the inoculation, and the
viable cell counts in the lungs were over almost 6 log10
CFUml−1. LPS release might be induced by ciprofloxacin
when the bacterial burden at the infected site is high.
Therefore, our model might represent a more severe model
of the acute phase with a high bacterial burden. There is the
report that LPS-hypersensitive C3H/HeN mice treated with
ceftazidime showed higher lethality than untreated mice [5].
In addition, in a mouse model of septic shock, LPS binding
and neutralizing peptide in combination with ceftazidime
improved the survival rate [29]. These reports suggest that
antibiotic-induced LPS release exerts an influence on the
therapeutic effect of the antibiotic. LpxC inhibitors might
prevent the reduction in the therapeutic effect of antibiotics
associated with antibiotic-induced LPS release. Further
investigation is needed to the relationship of the therapeutic
effect and the antibiotic-induced LPS release.

IL-6 is one of the important cytokines with both pro- and
anti-inflammatory effects, and acts as a major regulator of
host defenses against bacteria [30]. However, in sepsis, IL-6
is known to induce excessive inflammatory responses and
cytokine storm. Some studies were reported that mice or rats
treated with anti-IL-6 antibody showed prolonged survival
in the cecum ligation and puncture-induced sepsis model
[31, 32]. These reports suggest that overexpression of IL-6
can induce aggravation of symptoms in sepsis. The FDA has
approved the emergency use of tocilizumab, an IL-6 receptor
antibody, for the treatment of COVID-19 infection, which is
currently raging worldwide. Although there is not enough
evidence to support the use of tocilizumab for sepsis, it is
clear that IL-6 plays an important role in cytokine syn-
dromes [33], and further research for sepsis is expected. Our
results showed that the LpxC inhibitor TP0586532 might
suppress excessive inflammatory responses by inhibiting
LPS release and IL-6 production. However, several cyto-
kines other than IL-6 are known to be related to the exces-
sive inflammatory responses in sepsis [34]. The limitations
of our study are that no cytokines other than IL-6 were
evaluated. Further studies are need on the inhibition of LPS
release and the excessive inflammatory responses.

It has been reported that excessive inflammation and
immunosuppression occur simultaneously in the early phase
of sepsis [35]. Production of inflammatory cytokines in

excess both activated regulatory T cells and induced anti-
inflammatory cytokines, including IL-10 [36]. This status is
called compensatory anti-inflammatory response syndrome
(CARS). Both systemic inflammatory response syndrome
(SIRS) and CARS are induced more strongly in more cri-
tically ill patients [37]. Exhaustion of T cells as a result of
prolonged inflammatory events and anti-inflammatory
responses are known to be associated with worsening of
the disease state and a poor prognosis in patients with sepsis
[38]. Expressions of programmed death (PD)-1 and cyto-
toxic T lymphocyte antigen (CTLA)-4 on T cells have been
reported to be upregulated in patients with sepsis [39, 40].
Therefore, these molecules are expected as promising ther-
apeutic targets [41]. In a murine model of sepsis, while anti-
PD-1 and anti-CTLA-4 antibody improved the survival
rates, high doses of anti-CTLA-4 worsened the survival rates
[42, 43]. Thus, a proper balance between inflammatory
events and anti-inflammatory responses may be important
for the success of therapy in cases of sepsis. In addition, in
the cecum ligation and puncture rat model, it was reported
that the survival rate using low dose tocilizumab was higher
than that using high dose [32]. It has been suggested that
minimal levels of IL-6 signaling are required to maintain
immune system balance, especially in the acute phase of
early sepsis. Combined use of TP0586532 with meropenem
or ciprofloxacin attenuated the release of LPS and IL-6
production induced by meropenem and ciprofloxacin. Fur-
thermore, it is important to note that TP0586532 did not
completely suppress IL-6 production. These results indicate
the possibility that TP0586532 attenuates the IL-6 which are
excessively produced. Therefore, LpxC inhibitors might be
expected to reduce the adverse effects caused by over-
production of IL-6. In the present study, we conducted no
histopathological analysis and clinical conditions analysis
such as survival rate and body weight. These are limitations
of this study and further studies are needed.

For the management of sepsis, identification of the
source of infection and prompt administration of antibiotics
are still essential. Delays in the administration of antibiotics
have been reported to be associated with increased odds of
hospital mortality in cases of septic shock [44]. Selection of
an antibiotic(s) that does not induce excessive inflammatory
responses might be important for mitigating septic shock.

In conclusion, the inhibitory effect exerted by
TP0586532 on LPS release by other antibacterial drugs may
be of benefit in patients with sepsis. Future studies are
needed for a clearer elucidation of the effect of LpxC
inhibitors on disordered immune and excessive inflamma-
tory responses.
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