Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phenotypic screening system using three-dimensional (3D) culture models for natural product screening

Abstract

Recent progress in three-dimensional (3D) cell culture systems has attracted much attention in the fields of basic life science and drug development. Newly established methods include 3D co-culture, spheroid culture, and organoid culture; these methods enable more human tissue-like culture and have largely replaced traditional two-dimensional (2D) monolayer culture. By combining 3D culture methods with high-content imaging analysis, it is possible to obtain diverse and convincing data even during initial screening (which requires rapid and easy operating procedures). Until recently, 3D culture methods were considered expensive, time-consuming, complex, and unstable. However, by exploiting the self-assembling nature of cells and adding several technical improvements, we have developed several phenotypic screenings aimed at discovering anticancer compounds.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020;487:10–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Nakano I. Stem cell signature in glioblastoma: therapeutic development for a moving target. J Neurosurg. 2015;122:324–30.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545:187–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;28:5416923.

    Google Scholar 

  6. 6.

    Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014;515:274–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kim YH, Choi SH, D’Avanzo C, Hebisch M, Sliwinski C, Bylykbashi E, et al. A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat Protoc. 2015;10:985–1006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Kwak SS, Washicosky KJ, Brand E, von Maydell D, Aronson J, Kim S, et al. Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer’s disease. Nat Commun. 2020;11:1377.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Miller DJ. Sydney Ringer; physiological saline, calcium and the contraction of the heart. J Physiol. 2004;555:585–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Gähwiler BH. Nerve cells in culture: the extraordinary discovery by Ross Granville Harrison. Brain Res Bull. 1999;50:343–4.

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Sanford KK, Earle W, Likely GD. The growth in vitro of single isolated tissue cells. J Natl Cancer Inst. 1948;9:229–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97:695–710.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res. 2002;8:2912–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kawada M, Yoshimoto Y, Minamiguchi K, Kumagai H, Someno T, Masuda T, et al. A microplate assay for selective measurement of growth of epithelial tumor cells in direct coculture with stromal cells. Anticancer Res. 2004;24:1561–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kawada M, Atsumi S, Wada SI, Sakamoto S. Novel approaches for identification of anti-tumor drugs and new bioactive compounds. J Antibiot. 2018;71:39–44.

    CAS  Article  Google Scholar 

  17. 17.

    Simian M, Bissell M. Organoids: a historical perspective of thinking in three dimensions. J Cell Biol. 2017;216:31–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18:246–54.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19.

    Sato T, Vries RG, Snippert HJ, Wetering M, Barker N, Stange DE. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Chen X, Wei B, Han X, Zheng Z, Huang J, Liu J, et al. LGR5 is required for the maintenance of spheroid-derived colon cancer stem cells. Int J Mol Med. 2014;3:35–42. 4

    Article  CAS  Google Scholar 

  21. 21.

    Hirsch D, Barker N, McNeil N, Hu Y, Camps J, McKinnon K, et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis. 2014;35:849–58.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T, Hasegawa H, et al. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci. 2010;101:1731–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Leung C, Tan SH, Barker N. Recent advances in Lgr5+ stem cell research. Trends Cell Biol. 2018;28:380–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Morgan RG, Mortensson E, Williams AC. Targeting LGR5 in colorectal cancer: therapeutic gold or too plastic? Br J Cancer. 2018;118:1410–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH, van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterol 2011;141:1762–72.

    CAS  Article  Google Scholar 

  26. 26.

    Mahe MM, Aihara E, Schumacher MA, Zavros Y, Montrose MH, Helmrath MA. et al. Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol. 2013;3:217–40.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:1190–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Öhlund D, Handly‑Santana A, Biffi G, Elyada E, Almeida AS, Ponz‑Sarvise M, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:57996.

    Article  CAS  Google Scholar 

  29. 29.

    Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal modulators of TGF-β in cancer. J Clin Med 2017;6:7.

    PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:418–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 2020;39:112.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Froeling FEM, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology. 2011;141:1486–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Åkerfelt M, Bayramoglu N, Robinson S, Toriseva M, Schukov HP, Härmä V, et al. Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention. Oncotarget. 2015;6:30035–56.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22:45467.

    Article  CAS  Google Scholar 

  37. 37.

    Bulin AL, Broekgaarden M, Hasan T. Comprehensive high-throughput image analysis for therapeutic efficacy of architecturally complex heterotypic organoids. Sci Rep. 2017;7:16645.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Hou S, Tiriac H, Sridharan BP, Scampavia L, Madoux F, Seldin J, et al. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov. 2018;23:574–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 2018;18:335.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Baker LA, Tiriac H, Clevers H, Tuveson DA. Modeling pancreatic cancer with organoids. Trends Cancer. 2016;2:176–90.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Broekgaardena M, Anbila S, Bulina AL, Obaida G, Maia Z, Bagloa Y, et al. Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials 2019;222:119421.

    Article  CAS  Google Scholar 

  42. 42.

    Driehuis E, Hoeck A, Moore K, Kolders S, Francies HE, Gulersonmez MC, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. PNAS 2019;116:26580–90.

    CAS  PubMed Central  Article  Google Scholar 

  43. 43.

    Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20:S2–8.

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;15:5821–8.

    Google Scholar 

  45. 45.

    Yanae M, Tsubaki M, Satou T, Itoh T, Imano M, Yamazoe Y, et al. Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma. J Exp Clin Cancer Res 2011;30:74–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Afshordel S, Kern B, Clasohm J, König H, Priester M, Weissenberger J, et al. Lovastatin and perillyl alcohol inhibit glioma cell invasion, migration,and proliferation – Impact of Ras-/Rho-prenylationlovastatin. Pharm Res. 2015;91:69–77.

    CAS  Article  Google Scholar 

  47. 47.

    Xiao A, Brenneman B, Floyd D, Comeau L, Spurio K, Olmez I, et al. Statins affect human glioblastoma and other cancers through TGF-β inhibition. Oncotarget 2019;10:1716–28.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Graaf MR, Beiderbeck AB, Egberts ACG, Richel DJ, Guchelaar HJ. The risk of cancer in users of statins. J Clin Oncol. 2004;22:2388–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Gaist D, Andersen L, Hallas J, Sørensen HT, Schrøder HD, Friis S. Use of statins and risk of glioma: a nationwide case–control study in Denmark. Br J Cancer. 2013;108:715–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Gaist D, Hallas J, Friis S, Hansen S, Sørensen HT. Statin use and survival following glioblastoma multiforme. Cancer Epidemiol. 2014;38:722–27.

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain. 2019;142:847–66.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Fedele M, Cerchia L, Pegoraro S, Sgarra R, Manfioletti G. Proneural-mesenchymal transition: phenotypic plasticity to pcquire pultitherapy pesistance in glioblastoma. Int J Mol Sci. 2019;20:2746–59.

    CAS  PubMed Central  Article  Google Scholar 

  53. 53.

    Nakano I. Proneural–mesenchymal transformation of glioma stem cells: do therapies cause evolution of target in glioblastoma? Future Oncol. 2014;10:1527–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Guardia GDA, Correa BR, Araujo PR, Qiao M, Burns S, Penalva LOF, et al. Proneural and mesenchymal glioma stem cells display major differences in splicing and lncRNA profiles. NPJ Genom Med. 2020;5:2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Pavlyukov MS, Yu H, Bastola S, Minata M, Shender VO, Lee Y, et al. Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell. 2018;34:119–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, Kagaya N, et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat Commun. 2020;11:4660.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells. Cell. 2009;138:645–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell. 2018;174:856–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Broutier L, Mastrogiovanni G, Verstegen MMA, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modelling and drug screening. Nat Med. 2017;23:1424–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Technology Research Association for Next Generation Natural Products Chemistry.

Author information

Affiliations

Authors

Contributions

KS designed and managed the study; HS prepared screening samples; NK constructed assay systems and practiced screening; MK and DT established fluorescent labeled Panc-1 cells; TS established CSC cells; HS, NK, and KS wrote the manuscript.

Corresponding author

Correspondence to Kazuo Shin-ya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suenaga, H., Kagaya, N., Kawada, M. et al. Phenotypic screening system using three-dimensional (3D) culture models for natural product screening. J Antibiot 74, 660–666 (2021). https://doi.org/10.1038/s41429-021-00457-8

Download citation

Search

Quick links