Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Brief Communication
  • Published:

Quinofuracins F – I, new quinofuracin derivatives produced by Staphylotrichum boninense PF1444

Abstract

Four new quinofuracins F – I were isolated from the culture broth of Staphylotrichum boninense PF1444. The structures of quinofuracins F – I were elucidated by extensive spectroscopic analysis. These quinofuracins induced tumor suppressor protein p53-dependent cell death in human glioblastoma LNZTA3 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Meek DW. Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer. 2009;9:714–23.

    Article  CAS  Google Scholar 

  2. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

    Article  CAS  Google Scholar 

  3. Tovar C, Graves B, Packman K, Filipovic Z, Higgins B, Xia M, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013;73:2587–97.

    Article  CAS  Google Scholar 

  4. Rew Y, Sun D, Gonzalez-Lopez De Turiso F, Bartberger MD, Beck HP, Canon J, et al. Structure-based design of novel inhibitors of the MDM2-p53 interaction. J Med Chem. 2012;55:4936–54.

    Article  CAS  Google Scholar 

  5. Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, et al. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem. 2009;52:7970–3.

    Article  CAS  Google Scholar 

  6. Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, et al. The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 2015;14:649–58.

    Article  CAS  Google Scholar 

  7. Weisberg E, Halilovic E, Cooke VG, Nonami A, Ren T, Sanda T, et al. Inhibition of wild-type p53-expressing AML by the novel small molecule HDM2 inhibitor CGM097. Mol Cancer Ther. 2015;14:2249–59.

    Article  CAS  Google Scholar 

  8. Kawata Y, Nagasaka K, Oda K, Makii C, Takeuchi M, Oki S, et al. Effect of murine double-minute 2 inhibitors in preclinical models of advanced clear cell carcinomas originating from ovaries and kidneys. Cancer Sci. 2020;111:3824–34.

    Article  CAS  Google Scholar 

  9. Fang Y, Liao G, Yu B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020;10:1253–78.

    Article  CAS  Google Scholar 

  10. Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet. 1994;8:171–6.

    Article  Google Scholar 

  11. Tatsuda D, Momose I, Someno T, Sawa R, Kubota Y, Iijima M, et al. Quinofuracins A−E, produced by the fungus Staphylotrichum boninense PF1444, show p53-dependent growth suppression. J Nat Prod. 2015;78:188–95.

    Article  CAS  Google Scholar 

  12. Tatsuda D, Amemiya M, Sawa R, Sumiyoshi K, Watanabe T, Momose I, et al. Coccoquinones A and B, new anthraquinone derivatives produced by Staphylotrichum coccosporum PF1460. J Antibiot. 2016;69:176–8.

    Article  CAS  Google Scholar 

  13. Yabe K, Matsuyama Y, Ando Y, Nakajima H, Hamasaki T. Stereochemistry during aflatoxin biosynthesis: conversion of norsolorinic acid to averufin. Appl Environ Microbiol. 1993;59:2486–92.

    Article  CAS  Google Scholar 

  14. Hatsuda Y, Hamasaki T, Ishida M, Yoshikawa S. The structure of a new metabolite from Aspergillus versicolor. Agr Biol Chem. 1969;33:131–3.

    Article  CAS  Google Scholar 

  15. Fredenhagen A, Hug P, Sauter H, Peter HH. Paeciloquinones A, B, C, D, E and F: new potent inhibitors of protein tyrosine kinase produced by Paecilomyces carneus. II. Characterization and structure determination. J Antibiot. 1995;48:199–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Y Kubota and Dr K Iijima (BIKAKEN) for the measurements of NMR and MS spectroscopic data; Mr K Sumiyoshi, Ms N Sumida, and Ms K Kobayashi (Meiji Seika Pharma) for fermentation of quinofuracins; and Ms I Ohsawa and Ms T Miyazawa (BIKAKEN) for technical assistance. This work was supported by JSPS KAKENHI Grant Number JP19K07311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Momose.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatsuda, D., Amemiya, M., Sawa, R. et al. Quinofuracins F – I, new quinofuracin derivatives produced by Staphylotrichum boninense PF1444. J Antibiot 74, 758–762 (2021). https://doi.org/10.1038/s41429-021-00452-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00452-z

Search

Quick links