Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Review Article
  • Published:

Targeting hypoxia-inducible factor 1 (HIF-1) signaling with natural products toward cancer chemotherapy

Abstract

Tumor cells are often exposed to hypoxia because of the lower oxygen supply deep inside the tumor tissues. However, tumor cells survive in these severe conditions by adapting to hypoxic stress through the induction of hypoxia-inducible factor 1 (HIF-1) signaling. HIF-1 activation is responsible for the expression of numerous HIF-1 target genes, which are related to cell survival, proliferation, angiogenesis, invasion, metastasis, cancer stemness, and metabolic reprogramming. Therefore, HIF-1 is expected to be a potential pharmacological target for cancer therapy. Small molecules derived from natural products (microbial origin, plant-derived, or marine organisms) have been shown to have unique chemical structures and biological activities, including HIF-1 inhibition. Several studies identified HIF-1 inhibitors from natural products. In this review, we summarize the current HIF-1 signaling inhibitors originating from natural products with a variety of modes of action, mainly focusing on microbial metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90:4304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394:485–90.

    Article  CAS  PubMed  Google Scholar 

  4. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  5. Semenza GL. Hypoxia‐inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 2017;36:252–9.

    Article  CAS  PubMed  Google Scholar 

  6. Koyasu S, Kobayashi M, Goto Y, Hiraoka M, Harada H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 2018;109:560–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268:21513–8.

    Article  CAS  PubMed  Google Scholar 

  8. Semenza GL, Agani F, Booth G, Forsythe J, Iyer N, Jiang BH, et al. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int. 1997;51:553–5.

    Article  CAS  PubMed  Google Scholar 

  9. Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA. 1996;93:10595–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  CAS  PubMed  Google Scholar 

  11. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the α-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  13. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  14. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15:2675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA. 1997;94:8104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med. 2000;6:1335–40.

    Article  CAS  PubMed  Google Scholar 

  17. Nagle D, Zhou Y-D. Natural product-based inhibitors of hypoxia-inducible factor-1 (HIF-1). Curr Drug Targets. 2006;7:355–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today. 2007;12:853–9.

    Article  CAS  PubMed  Google Scholar 

  19. Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med. 2009;13:2780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manolescu B, Oprea E, Busu C, Cercasov C. Natural compounds and the hypoxia-inducible factor (HIF) signalling pathway. Biochimie. 2009;91:1347–58.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattarai D, Xu X, Lee K. Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): a “structure–activity relationship” perspective. Med Res Rev. 2018;38:1404–42.

    Article  PubMed  Google Scholar 

  22. Semenza GL. Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 2019;59:379–403.

    Article  CAS  PubMed  Google Scholar 

  23. Zhong JC, Li XB, Lyu WY, Ye WC, Zhang DM. Natural products as potent inhibitors of hypoxia-inducible factor-1α in cancer therapy. Chin J Nat Med. 2020;18:696–703.

    PubMed  Google Scholar 

  24. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994;269:23757–63.

    Article  CAS  PubMed  Google Scholar 

  25. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ. 2001;12:363–9.

    CAS  PubMed  Google Scholar 

  27. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL. & Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002;277:27975–81.

    Article  CAS  PubMed  Google Scholar 

  28. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10:594–601.

    Article  CAS  PubMed  Google Scholar 

  30. Miyazawa M, Yasuda M, Fujita M, Kajiwara H, Hirabayashi K, Takekoshi S, et al. Therapeutic strategy targeting the mTOR-HIF-1α-VEGF pathway in ovarian clear cell adenocarcinoma. Pathol Int. 2009;59:19–27.

    Article  CAS  PubMed  Google Scholar 

  31. Alshaker H, Wang Q, Kawano Y, Arafat T, Böhler T, Winkler M, et al. Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget. 2016;7:80943–56.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arai M, Kawachi T, Sato H, Setiawan A, Kobayashi M. Marine spongian sesquiterpene phenols, dictyoceratin-C and smenospondiol, display hypoxia-selective growth inhibition against cancer cells. Bioorg Med Chem Lett. 2014;24:3155–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kawachi T, Tanaka S, Fukuda A, Sumii Y, Setiawan A, Kotoku N, et al. Target identification of the marine natural products dictyoceratin-A and -C as selective growth inhibitors in cancer cells adapted to hypoxic environments. Mar Drugs. 2019;17:1–14.

    Article  CAS  Google Scholar 

  34. Nishiyama Y, Sugawara K, Tomita K, Yamamoto H, Kamei H, Oki T. Verucopeptin, a new antitumor antibiotic active against B16 melanoma. J Antibiot. 1993;46:921–7.

    Article  CAS  Google Scholar 

  35. Yoshimura A, Nishimura S, Otsuka S, Hattori A, Kakeya H. Structure elucidation of verucopeptin, a HIF-1 inhibitory polyketide-hexapeptide hybrid metabolite from an actinomycete. Org Lett. 2015;17:5364–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kakeya H. Natural products-prompted chemical biology: Phenotypic screening and a new platform for target identification. Nat Prod Rep. 2016;33:648–54.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Wang Y, Huang W, Wei Y, Jiang Z, Kong L, et al. Biosynthesis and chemical diversification of verucopeptin leads to structural and functional versatility. Org Lett. 2020;22:4366–71.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Zhang L, Wei Y, Huang W, Li L, Wu AA, et al. Pharmacological targeting of vacuolar H+-ATPase via subunit V1G combats multidrug-resistant cancer. Cell Chem Biol. 2020;27:1359–1370. e8

    Article  CAS  PubMed  Google Scholar 

  39. Turocy T, Crawford JM. Dual targeting of v-ATPase and mTORC1 signaling disarms multidrug-resistant cancers. Cell Chem Biol. 2020;27:1329–31.

    Article  CAS  PubMed  Google Scholar 

  40. Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF‐1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005;19:342–53.

    Article  CAS  PubMed  Google Scholar 

  41. Fang J, Zhou Q, Liu LZ, Xia C, Hu X, Shi X, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1α and VEGF expression. Carcinogenesis. 2007;28:858–64.

    Article  CAS  PubMed  Google Scholar 

  42. Lee SH, Jee JG, Bae JS, Liu KH, Lee YM. A group of novel HIF-1α inhibitors, glyceollins, blocks HIF-1α synthesis and decreases its stability via inhibition of the PI3K/AKT/mTOR pathway and Hsp90 binding. J Cell Physiol. 2015;230:853–62.

    Article  CAS  PubMed  Google Scholar 

  43. Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3:363–75.

    Article  CAS  PubMed  Google Scholar 

  44. Harrison MR, Hahn NM, Pili R, Oh WK, Hammers H, Sweeney C, et al. A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal ® dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Invest N Drugs. 2011;29:1465–74.

    Article  CAS  Google Scholar 

  45. Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 2002;62:4316–24.

    CAS  PubMed  Google Scholar 

  46. Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 2004;64:1475–82.

    Article  CAS  PubMed  Google Scholar 

  47. Rapisarda A, Zalek J, Hollingshead M, Braunschweig T, Uranchimeg B, Bonomi CA, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1α protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res.2004;64:6845–8.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc Natl Acad Sci USA. 2008;105:19579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamazaki Y, Someno T, Minamiguchi K, Kawada M, Momose I, Kinoshita N, et al. Inhibitory activity of the hypoxia-inducible factor-1 pathway by tartrolone C. J Antibiot. 2006;59:693–7.

    Article  CAS  Google Scholar 

  50. Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, et al. Hypoxia-induced activation of HIF-1: Role of HIF-1α-Hsp90 interaction. FEBS Lett. 1999;460:251–6.

    Article  CAS  PubMed  Google Scholar 

  51. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62:2478–82.

    CAS  PubMed  Google Scholar 

  52. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J Biol Chem. 2002;277:29936–44.

    Article  CAS  PubMed  Google Scholar 

  53. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol Cell. 2007;25:207–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pacey S, Gore M, Chao D, Banerji U, Larkin J, Sarker S, et al. A phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Invest N Drugs. 2012;30:341–9.

    Article  CAS  Google Scholar 

  55. Hur E, Kim HH, Choi SM, Kim JH, Yim S, Kwon HJ, et al. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1α/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol Pharmacol. 2002;62:975–82.

    Article  CAS  PubMed  Google Scholar 

  56. Kurebayashi J, Otsuki T, Kurosumi M, Soga S, Akinaga S, Sonoo H. A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res. 2001;92:1342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ban HS, Shimizu K, Minegishi H, Nakamura H. Identification of HSP60 as a primary target of o-carboranylphenoxyacetanilide, an HIF-1α Inhibitor. J Am Chem Soc. 2010;132:11870–1.

    Article  CAS  PubMed  Google Scholar 

  58. Nagumo Y, Kakeya H, Shoji M, Hayashi Y, Dohmae N, Osada H. Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J. 2005;387:835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7:437–43.

    Article  PubMed  Google Scholar 

  60. Kim SH, Jeong JW, Park JA, Lee JW, Seo JH, Jung BK, et al. Regulation of the HIF-1α stability by histone deacetylases. Oncol Rep. 2007;17:647–51.

    CAS  PubMed  Google Scholar 

  61. Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol Cell Biol. 2006;26:2019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang D, Kong X, Sang N. Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle. 2006;5:2430–5.

    Article  CAS  PubMed  Google Scholar 

  63. Mie Lee Y, Kim SH, Kim HS, Jin Son M, Nakajima H, Jeong Kwon H, Kim KW. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochem Biophys Res Commun. 2003;300:241–6.

    Article  PubMed  Google Scholar 

  64. Agani FH, Pichiule P, Chavez JC, LaManna JC. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem. 2000;275:35863–7.

    Article  CAS  PubMed  Google Scholar 

  65. Maeda M, Hasebe Y, Egawa K, Shibanuma M, Nose K. Inhibition of angiogenesis and HIF-1α activity by antimycin A1. Biol Pharm Bull. 2006;29:1344–8.

    Article  CAS  PubMed  Google Scholar 

  66. Gong Y, Agani FH. Oligomycin inhibits HIF-1α expression in hypoxic tumor cells. Am J Physiol Cell Physiol. 2005;288:1023–9.

    Article  CAS  Google Scholar 

  67. Hodges TW, Hossain CF, Kim YP, Zhou YD, Nagle DG. Molecular-targeted antitumor agents: the Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1. J Nat Prod. 2004;67:767–71.

    Article  CAS  PubMed  Google Scholar 

  68. Hossain CF, Kim YP, Baerson SR, Zhang L, Bruick RK, Mohammed KA, et al. Saururus cernuus lignans - Potent small molecule inhibitors of hypoxia-inducible factor-1. Biochem Biophys Res Commun. 2005;333:1026–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma Y, Min HK, Oh U, Hawkridge AM, Wang W, Mohsin AA, et al. The lignan manassantin is a potent and specific inhibitor of mitochondrial complex I and bioenergetic activity in mammals. J Biol Chem. 2017;292:20989–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin X, David CA, Donnelly JB, Michaelides M, Chandel NS, Huang X, et al. A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proc Natl Acad Sci USA. 2008;105:174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim KK, Abelman S, Yano N, Ribeiro JR, Singh RK, Tipping M, et al. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells. Sci Rep. 2015;5:1–10.

    Google Scholar 

  72. Van Dyke MM, Dervan PB. Echinomycin binding sites on DNA. Science. 1984;225:1122–7.

    Article  PubMed  Google Scholar 

  73. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 2005;65:9047–55.

    Article  CAS  PubMed  Google Scholar 

  74. Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA, Vieira A, et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell. 2004;6:33–43.

    Article  CAS  PubMed  Google Scholar 

  75. Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci USA. 2009;106:17910–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, et al. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15:1557–62.

    CAS  PubMed  Google Scholar 

  77. Choi H, Chun YS, Kim SW, Kim MS, Park JW. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol. 2006;70:1664–71.

    Article  CAS  PubMed  Google Scholar 

  78. Yasuda Y, Arakawa T, Nawata Y, Shimada S, Oishi S, Fujii N, et al. Design, synthesis, and structure-activity relationships of 1-ethylpyrazole-3-carboxamide compounds as novel hypoxia-inducible factor (HIF)-1 inhibitors. Bioorg Med Chem. 2015;23:1776–87.

    Article  CAS  PubMed  Google Scholar 

  79. Li X, Hattori A, Takahashi S, Goto Y, Harada H, Kakeya H. Ubiquitin carboxyl-terminal hydrolase L1 promotes hypoxia-inducible factor 1-dependent tumor cell malignancy in spheroid models. Cancer Sci. 2020;111:239–52.

    Article  CAS  PubMed  Google Scholar 

  80. Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, et al. A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther. 2008;7:3598–608.

    Article  CAS  PubMed  Google Scholar 

  81. Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. Cancer Chemother Pharmacol. 2014;73:343–8.

    Article  CAS  PubMed  Google Scholar 

  82. Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Mol Cancer Ther. 2004;3:233–44.

    Article  CAS  PubMed  Google Scholar 

  83. Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1α. Mol Cancer Ther. 2008;7:90–100.

    Article  CAS  PubMed  Google Scholar 

  84. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature. 2016;539:107–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, et al. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016;76:5491–5500.

    Article  CAS  PubMed  Google Scholar 

  86. Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 2018;36:867–74.

    Article  CAS  PubMed  Google Scholar 

  87. Schönberger T, Fandrey J, Prost-Fingerle K. Ways into understanding HIF inhibition. Cancers. 2021;13:1–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan [17H06401 (H.K.) and 19H02840 (H.K.)] and Grants for Research on the Innovative Development and the Practical Application of New Drugs for Hepatitis B Grant [20fk0310112 (H.K.), 21fk0310112 (H.K.)] and for the Platform Project for Supporting Drug Discovery and Life Science Research [21am0101092 (H.K.)] from the Japan Agency for Medical Research and Development (AMED), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Kakeya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, H., Kakeya, H. Targeting hypoxia-inducible factor 1 (HIF-1) signaling with natural products toward cancer chemotherapy. J Antibiot 74, 687–695 (2021). https://doi.org/10.1038/s41429-021-00451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00451-0

This article is cited by

Search

Quick links