Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Daptomycin suppresses tumor migration and angiogenesis via binding to ribosomal protein S19 in humans


We have previously reported that daptomycin (DAP), a last resort antibiotic, binds to ribosomal protein S19 (RPS19) in humans and exhibits selective anti-cancer activity against MCF7 breast cancer cells. Here, we investigated the role of RPS19 in the anti-cancer effects of DAP and have found that DAP does not induce autophagy, apoptosis or cell viability but does reduce cell proliferation. Our results suggest that an extraribosomal function of RPS19 involves the regulation of vascular endothelial growth factor (VEGF) but not EGF, PDGF or FGF. Engagement of RPS19 by DAP was shown by CETSA and ITDRFCETSA assays, and knocking down of RPS19 with siRNA increased the potency of DAP in MCF7 cells. In addition, DAP suppressed the secretion of VEGF in cancer cells and thereby inhibited cell migration. Collectively, these data provide an outline of the underlying mechanism of how DAP exhibits anti-cancer activity and suggests that RPS19 could be a promising target for the development of new anticancer drugs.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Debono M, Barnhart M, Carrell C, Hoffmann J, Occolowitz J, Abbott B, et al. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot (Tokyo). 1987;40:761–77.

    CAS  Article  Google Scholar 

  2. 2.

    Müller A, Wenzel M, Strahl H, Grein F, Saaki TN, Kohl B, et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci USA. 2016;113:E7077–E86.

    Article  Google Scholar 

  3. 3.

    Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, Bryan JG, et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer. 2020;1:235–48.

    Article  Google Scholar 

  4. 4.

    Gotsbacher MP, Cho S, Kwon HJ, Karuso P. Daptomycin, a last-resort antibiotic, binds ribosomal protein S19 in humans. Proteome Sci. 2016;15:1–15.

    Article  Google Scholar 

  5. 5.

    Libson S, Lippman M. A review of clinical aspects of breast cancer. Int Rev Psychiatry 2014;26:4–15.

    Article  Google Scholar 

  6. 6.

    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N. Engl J Med. 2010;363:1938–48.

    CAS  Article  Google Scholar 

  7. 7.

    Bartucci M, Morelli C, Mauro L, Surmacz E. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res. 2001;61:6747–54.

    CAS  PubMed  Google Scholar 

  8. 8.

    Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor–positive tumors. N. Engl J Med. 1989;320:479–84.

    CAS  Article  Google Scholar 

  9. 9.

    Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2–positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    CAS  Article  Google Scholar 

  10. 10.

    Bogin L, Degani H. Hormonal regulation of VEGF in orthotopic MCF7 human breast cancer. Cancer Res. 2002;62:1948–51.

    CAS  PubMed  Google Scholar 

  11. 11.

    Kim J, Kong J, Chang H, Kim H, Kim A. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget. 2016;7:85021.

    Article  Google Scholar 

  12. 12.

    Gotsbacher MP, Cho SM, Kim NH, Liu F, Kwon HJ, Karuso P. Reverse chemical proteomics identifies an unanticipated human target of the antimalarial artesunate. ACS Chem Biol. 2019;14:636–43.

    CAS  Article  Google Scholar 

  13. 13.

    Cho SM, Lee HK, Liu Q, Wang M-W, Kwon HJ. A guanidine-based synthetic compound suppresses angiogenesis via inhibition of acid ceramidase. ACS Chem Biol. 2018;14:11–9.

  14. 14.

    Albini A, Iwamoto Y, Kleinman H, Martin G, Aaronson S, Kozlowski J, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987;47:3239–45.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chang J, Jung HJ, Jeong SH, Kim HK, Han J, Kwon HJ. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species. Biochem Biophys Res Commun. 2014;455:290–7.

    CAS  Article  Google Scholar 

  16. 16.

    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014;9:2100.

    CAS  Article  Google Scholar 

  17. 17.

    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87:3336–43.

    CAS  Article  Google Scholar 

  18. 18.

    Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3′-kinase and phospholipase C-dependent mechanism. Cancer Res. 1999;59:5475–78.

    CAS  PubMed  Google Scholar 

  19. 19.

    Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329.

    CAS  Article  Google Scholar 

  20. 20.

    Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47:2538–44.

    CAS  Article  Google Scholar 

  21. 21.

    Jung D, Rozek A, Okon M, Hancock RE. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 2004;11:949–57.

    CAS  Article  Google Scholar 

  22. 22.

    Patel S, Saw S. Daptomycin: StatPearls Publishing, Treasure Island (FL); 2020.

  23. 23.

    Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–89.

    CAS  Article  Google Scholar 

  24. 24.

    Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014;88:e51046.

  25. 25.

    Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3:673–83.

    CAS  Article  Google Scholar 

  26. 26.

    Padhy B, Gupta Y. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med. 2011;57:153.

    CAS  Article  Google Scholar 

  27. 27.

    Cao X, Wang A, Jiao R, Wang C, Mao D, Yan L, et al. Surfactin induces apoptosis and G 2/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys. 2009;55:163–71.

    CAS  Article  Google Scholar 

  28. 28.

    Park SY, Kim J-H, Lee YJ, Lee SJ, Kim Y. Surfactin suppresses TPA-induced breast cancer cell invasion through the inhibition of MMP-9 expression. Int J Oncol. 2013;42:287–96.

    CAS  Article  Google Scholar 

  29. 29.

    Lai M-D, Xu J. Ribosomal proteins and colorectal cancer. Curr Genomics. 2007;8:43–49.

    CAS  Article  Google Scholar 

  30. 30.

    de las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, Lleonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev. 2014;33:115–41.

    PubMed  Google Scholar 

  31. 31.

    Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. Sci China Life Sci. 2016;59:656–72.

    CAS  Article  Google Scholar 

  32. 32.

    Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol. 2019;234:8327–41.

    CAS  Article  Google Scholar 

  33. 33.

    Lindstroem MS. Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun. 2009;379:167–70.

    CAS  Article  Google Scholar 

  34. 34.

    Angelini M, Cannata S, Mercaldo V, Gibello L, Santoro C, Dianzani I, et al. Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet. 2007;16:1720–27.

    CAS  Article  Google Scholar 

  35. 35.

    Arbiv OA, Cuvelier G, Klaassen RJ, Fernandez CV, Robitaille N, Steele M, et al. Molecular analysis and genotype-phenotype correlation of Diamond-Blackfan anemia. Clin Genet. 2018;93:320–28.

    CAS  Article  Google Scholar 

  36. 36.

    Chiocchetti A, Gibello L, Carando A, Aspesi A, Secco P, Garelli E, et al. Interactions between RPS19, mutated in Diamond-Blackfan anemia, and the PIM-1 oncoprotein. Haematologica. 2005;90:1453–62.

    CAS  PubMed  Google Scholar 

  37. 37.

    Berse B, Brown LF, Van De Water L, Dvorak HF, Senger DR. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell. 1992;3:211–20.

    CAS  Article  Google Scholar 

  38. 38.

    Monacci WT, Merrill MJ, Oldfield EH. Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J Physiol Cell Physiol. 1993;264:C995–C1002.

    CAS  Article  Google Scholar 

Download references


This work was partly supported by grants from the National Research Foundation of Korea (MSIP; 2015K1A1A2028365, 2015M3A9C4076321), the Brain Korea 21Four Project in the Republic of Korea, and ICONS (Institute of Convergence Science), Yonsei University and the ARC discovery grant DP1301032.

Author information



Corresponding author

Correspondence to Ho Jeong Kwon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, S.M., Lee, H.J., Karuso, P. et al. Daptomycin suppresses tumor migration and angiogenesis via binding to ribosomal protein S19 in humans. J Antibiot 74, 726–733 (2021).

Download citation


Quick links