Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thiosemicarbazones exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1)


The superbug infection caused by metallo-β-lactamases (MβLs) carrying drug-resistant bacteria, specifically, New Delhi metallo-β-lactamase (NDM-1) has become an emerging threat. In an effort to develop novel inhibitors of NDM-1, thirteen thiosemicarbazones (1a-1m) were synthesized and assayed. The obtained molecules specifically inhibited NDM-1, with an IC50 in the range of 0.88–20.2 µM, and 1a and 1f were found to be the potent inhibitors (IC50 = 1.79 and 0.88 μM) using cefazolin as substrate. ITC and kinetic assays indicated that 1a irreversibly and non-competitively inhibited NDM-1 in vitro. Importantly, MIC assays revealed that these molecules by themselves can sterilize NDM-producing clinical isolates EC01 and EC08, exhibited 78-312-fold stronger activities than the cefazolin. MIC assays suggest that 1a (16 μg ml−1) has synergistic antimicrobial effect with ampicillin, cefazolin and meropenem on E. coli producing NDM-1, resulting in MICs of 4-32-, 4-32-, and 4-8-fold decrease, respectively. These studies indicate that the thiosemicarbazide is a valuable scaffold for the development of inhibitors of NDM-1 and NDM-1 carrying drug-resistant bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160–201.

    Article  CAS  Google Scholar 

  2. Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.

    Article  CAS  Google Scholar 

  3. Spencer J, Walsh TR. A new approach to the inhibition of metallo-β-lactamases. ChemInform. 2006;37:1022–6.

    Google Scholar 

  4. Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62:e01076–18.

    Article  CAS  Google Scholar 

  5. Crowder MW, Spencer J, Vila AJ. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39:721–8.

    Article  CAS  Google Scholar 

  6. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrobial Agents Chemother. 2011;55:4943–6.

    Article  CAS  Google Scholar 

  7. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11:381–93.

    Article  CAS  Google Scholar 

  8. Docquier J-D, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resistance Updates. 2018;36:13–29.

    Article  Google Scholar 

  9. Xiang Y, Chang Y-N, Ge Y, Kang JS, Zhang Y-L, Liu X-L, et al. Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors. Bioorg Medicinal Chem Lett. 2017;27:5225–9.

    Article  CAS  Google Scholar 

  10. González MM, Kosmopoulou M, Mojica MF, Castillo V, Hinchliffe P, Pettinati I, et al. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infect Dis. 2015;1:544–54.

    Article  Google Scholar 

  11. Ishii Y, Eto M, Mano Y, Tateda K, Yamaguchi K. In vitro potentiation of carbapenems with ME1071, a novel metallo-β-lactamase inhibitor, against metallo-β-lactamase- producing pseudomonas aeruginosa clinical isolates. Antimicrobial Agents Chemother. 2010;54:3625–9.

    Article  CAS  Google Scholar 

  12. King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014;510:503–6.

    Article  CAS  Google Scholar 

  13. Proschak A, Kramer J, Proschak E, Wichelhaus TA. Bacterial zincophore [S,S]-ethylenediamine-N,N′-disuccinic acid is an effective inhibitor of MBLs. J Antimicrobial Chemother. 2017;73:425–30.

    Article  Google Scholar 

  14. Cheng C, Xiang Y, Yang K-W, Zhang Y, Wang W-M, Su J-P, et al. A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-β-lactamases. Chem Commun. 2018;54:4802–5.

    Article  Google Scholar 

  15. Everett M, Sprynski N, Coelho A, Castandet J, Bayet M, Bougnon J, et al. Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant enterobacteriaceae. Antimicrobial Agents Chemother. 2018;62:e00074–18.

    Article  CAS  Google Scholar 

  16. Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect. 2010;16:1699–701.

    Article  CAS  Google Scholar 

  17. Zhu J, Sun L, Ding B, Yang Y, Xu X, Liu W, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae ST76 and ST37 isolates in neonates. Eur J Clin Microbiol Infect Dis. 2016;35:611–8.

    Article  CAS  Google Scholar 

  18. Azumah R, Dutta J, Somboro AM, Ramtahal M, Chonco L, Parboosing R, et al. In vitro evaluation of metal chelators as potential metallo-β-lactamase inhibitors. J Appl Microbiol. 2016;120:860–7.

    Article  CAS  Google Scholar 

  19. Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, et al. Dipicolinic acid derivatives as inhibitors of New Delhi metallo-β-lactamase-1. J Med Chem. 2017;60:7267–83.

    Article  CAS  Google Scholar 

  20. Brem J, van Berkel SS, Zollman D, Lee SY, Gileadi O, McHugh PJ, et al. Structural basis of metallo-β-lactamase inhibition by captopril stereoisomers. Antimicrob Agents Chemother. 2016;60:142–50.

    Article  CAS  Google Scholar 

  21. Wetli HA, Buckett PD, Wessling-Resnick M. Small-molecule screening identifies the selanazal drug ebselen as a potent inhibitor of DMT1-mediated iron uptake. Chem Biol. 2006;13:965–72.

    Article  CAS  Google Scholar 

  22. Chiou J, Wan S, Chan K-F, So P-K, He D, Chan EW-C, et al. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem Commun. 2015;51:9543–6.

    Article  CAS  Google Scholar 

  23. Choudhury C, Priyakumar UD, Sastry GN. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J Chem Inf modeling. 2015;55:848–60.

    Article  CAS  Google Scholar 

  24. Knox JJ, Hotte SJ, Kollmannsberger C, Winquist E, Fisher B, Eisenhauer EA. Phase II study of Triapine® in patients with metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Investigational N. Drugs. 2007;25:471–7.

    Article  CAS  Google Scholar 

  25. Spyrakis F, Santucci M, Maso L, Cross S, Gianquinto E, Sannio F, et al. Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Sci Rep. 2020;10:12763.

    Article  CAS  Google Scholar 

  26. Draczkowski P, Tomaszuk A, Halczuk P, Strzemski M, Matosiuk D, Jozwiak K. Determination of affinity and efficacy of acetylcholinesterase inhibitors using isothermal titration calorimetry. Biochimica et Biophysica Acta (BBA) - Gen Subj. 2016;1860:967–74.

    Article  CAS  Google Scholar 

  27. Zhang YJ, Wang WM, Oelschlaeger P. Real-time monitoring of NDM-1 activity in live bacterial cells by isothermal titration calorimetry: a new approach to measure inhibition of antibiotic-resistant bacteria. ACS Infect Dis. 2018;4:1671–8.

    Article  CAS  Google Scholar 

  28. Morales S, Aceña JL, García Ruano JL, Cid MB. Sustainable synthesis of oximes, hydrazones, and thiosemicarbazones under mild organocatalyzed reaction conditions. J Org Chem. 2016;81:10016–22.

    Article  CAS  Google Scholar 

  29. Sader HS, Flamm RK, Jones RN. Antimicrobial activity of daptomycin tested against Gram-positive pathogens collected in Europe, Latin America, and selected countries in the Asia-Pacific Region (2011). Diagnostic Microbiol Infect Dis. 2013;75:417–22.

    Article  CAS  Google Scholar 

Download references


This research was funded by the Grants (22077100 and 2019KW-068 to K.W.Y) from the National Natural Science Foundation of China and Shaanxi Province International Cooperation Project and grant (17JS007 to L.Z.) from the Shaanxi Education Commission, China.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ke-Wu Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Kang, PW., Li, JQ. et al. Thiosemicarbazones exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). J Antibiot 74, 574–579 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links