Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proteomics-based target identification of natural products affecting cancer metabolism

Abstract

The Warburg effect, a widely known characteristic of cancer cells, refers to the utilization of glycolysis under aerobic conditions for extended periods of time. Recent studies have revealed that cancer cells are capable of reprogramming their metabolic pathways to meet vigorous metabolic demands. New anticancer drugs that target the complicated metabolic systems of cancer cells are being developed. Identifying the potential targets of novel compounds that affect cancer metabolism may enable the discovery of new therapeutic targets for cancer treatment, and hasten the development of anticancer drugs. Historically, various drug screening techniques such as the analysis of a compound’s antiproliferative effect on cancer cells and proteomic methods, that enable target identification have been used to obtain many useful drugs from natural products. Here, we review proteomics-based target identification methods applicable to natural products that affect cancer metabolism.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    CAS  Article  Google Scholar 

  3. 3.

    Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2-[18F]Fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res. 1996;2:933–9.

    CAS  PubMed  Google Scholar 

  4. 4.

    Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020;32:341–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Peeters TH, Lenting K, Breukels V, van Lith SAM, van den Heuvel C, Molenaar R, et al. Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab. 2019;7:4.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Shim EH, Livi CB, Rakheja D, Tan J, Benson D, Parekh V, et al. L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 2014;4:1290–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Golub D, Iyengar N, Dogra S, Wong T, Bready D, Tang K, et al. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front Oncol. 2019;9:417.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24:1036–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Alalem M, Ray A, Ray BK. Metformin induces degradation of mTOR protein in breast cancer cells. Cancer Med. 2016;5:3194–204.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharm Sci. 2018;39:867–78.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 2014;3:e02242.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Horgan DJ, Ohno H, Singer TP. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XV. Interactions of piericidin with the mitochondrial respiratory chain. J Biol Chem. 1968;243:5967–76.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, et al. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA. 2003;100:473–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Berry EA, Huang LS, Lee DW, Daldal F, Nagai K, Minagawa N. Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc1 complex. Biochim Biophys Acta. 2010;1797:360–70.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Tamura G, Suzuki S, Takatsuki A, Ando K. Arima K. Ascochlorin, a new antibiotic, found by the paper-disc agar-diffusion method. I. Isolation, biological and chemical properties of ascochlorin. (Studies on antiviral and antitumor antibiotics. I). J Antibiot. 1968;21:539–44.

    CAS  Article  Google Scholar 

  18. 18.

    Joshi S, Huang YG. ATP synthase complex from bovine heart mitochondria: the oligomycin sensitivity conferring protein is essential for dicyclohexyl carbodiimide-sensitive ATPase. Biochim Biophys Acta. 1991;1067:255–8.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem. 2009;52:6752–6.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, et al. Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 2002;21:6082–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Momose I, Ohba S, Tatsuda D, Kawada M, Masuda T, Tsujiuchi G, et al. Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions. Biochem Biophys Res Commun. 2010;392:460–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Reckzeh ES, Waldmann H. Small-molecule inhibition of glucose transporters GLUT-1-4. Chembiochem. 2020;21:45–52.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kitagawa M, Ikeda S, Tashiro E, Soga T, Imoto M. Metabolomic identification of the target of the filopodia protrusion inhibitor glucopiericidin A. Chem Biol. 2010;17:989–98.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018;10:eaat5933.

  25. 25.

    Kondoh Y, Honda K, Osada H. Construction and application of a photo-cross-linked chemical array. Methods Mol Biol. 2015;1263:29–41.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Asmari M, Ratih R, Alhazmi HA, El Deeb S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018;146:107–19.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Kanoh N, Honda K, Simizu S, Muroi M, Osada H. Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. Angew Chem Int Ed Engl. 2005;44:3559–62.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M, et al. High-performance affinity beads for identifying drug receptors. Nat Biotechnol. 2000;18:877–81.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345–50.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Sato S, Murata A, Shirakawa T, Uesugi M. Biochemical target isolation for novices: affinity-based strategies. Chem Biol. 2010;17:616–23.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Kanoh N, Takayama H, Honda K, Moriya T, Teruya T, Simizu S, et al. Cleavable linker for photo-cross-linked small-molecule affinity matrix. Bioconjug Chem. 2010;21:182–6.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Jung HJ, Shim JS, Lee J, Song YM, Park KC, Choi SH, et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem. 2010;285:11584–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Wada A, Hara S, Osada H. Ribosome display and photo-cross-linking techniques for in vitro identification of target proteins of bioactive small molecules. Anal Chem. 2014;86:6768–73.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T et al. Target identification and validation of natural products with label-free methodology: a critical review from 2005 to 2020. Pharmacol Ther. 2020;216:107690.

  36. 36.

    Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chem Biol. 2020;28:394–423.

  37. 37.

    Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA. 2009;106:21984–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Dal Piaz F, Vera Saltos MB, Franceschelli S, Forte G, Marzocco S, Tuccinardi T, et al. Drug affinity responsive target stability (DARTS) identifies laurifolioside as a new clathrin heavy chain modulator. J Nat Prod. 2016;79:2681–92.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Vasaturo M, Cotugno R, Fiengo L, Vinegoni C, Dal Piaz F, De Tommasi N. The anti-tumor diterpene oridonin is a direct inhibitor of Nucleolin in cancer cells. Sci Rep. 2018;8:16735.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Geer Wallace MA, Kwon DY, Weitzel DH, Lee CT, Stephenson TN, Chi JT, et al. Discovery of manassantin A protein targets using large-scale protein folding and stability measurements. J Proteome Res. 2016;15:2688–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kasper AC, Moon EJ, Hu X, Park Y, Wooten CM, Kim H, et al. Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations. Bioorg Med Chem Lett. 2009;19:3783–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346:1255784.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Park H, Ha J, Koo JY, Park J, Park SB. Label-free target identification using in-gel fluorescence difference via thermal stability shift. Chem Sci. 2017;8:1127–33.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Nagasawa I, Muroi M, Kawatani M, Ohishi T, Ohba SI, Kawada M, et al. Identification of a small compound targeting PKM2-regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA. Cell Chem Biol. 2020;27:186–96.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kirsch VC, Orgler C, Braig S, Jeremias I, Auerbach D, Muller R, et al. The cytotoxic natural product vioprolide A targets nucleolar protein 14, which is essential for ribosome biogenesis. Angew Chem Int Ed Engl. 2020;59:1595–600.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Yan F, Auerbach D, Chai Y, Keller L, Tu Q, Huttel S, et al. Biosynthesis and heterologous production of vioprolides: rational biosynthetic engineering and unprecedented 4-methylazetidinecarboxylic acid formation. Angew Chem Int Ed Engl. 2018;57:8754–9.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, et al. A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot. 1980;33:468–73.

    CAS  Article  Google Scholar 

  48. 48.

    Endo A, Hasumi K, Sakai K, Kanbe T. Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J Antibiot. 1985;38:920–5.

    CAS  Article  Google Scholar 

  49. 49.

    Sakai K, Hasumi K, Endo A. Identification of koningic acid (heptelidic acid)-modified site in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1991;1077:192–6.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Muroi M, Futamura Y, Osada H. Integrated profiling methods for identifying the targets of bioactive compounds: MorphoBase and ChemProteoBase. Nat Prod Rep. 2016;33:621–5.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Muroi M, Osada H. Proteomic profiling for target identification of biologically active small molecules using 2D DIGE. Methods Mol Biol. 2019;1888:127–39.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Kawatani M, Muroi M, Wada A, Inoue G, Futamura Y, Aono H, et al. Proteomic profiling reveals that collismycin A is an iron chelator. Sci Rep. 2016;6:38385.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Futamura Y, Muroi M, Aono H, Kawatani M, Hayashida M, Sekine T, et al. Bioenergetic and proteomic profiling to screen small molecule inhibitors that target cancer metabolisms. Biochim Biophys Acta. 2019;1867:28–37.

    CAS  Article  Google Scholar 

  54. 54.

    Subedi A, Muroi M, Futamura Y, Kawamura T, Aono H, Nishi M, et al. A novel inhibitor of tumorspheres reveals the activation of the serine biosynthetic pathway upon mitochondrial inhibition. FEBS Lett. 2019;593:763–76.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007;25:1035–44.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Dittus L, Werner T, Muelbaier M, Bantscheff M. Differential kinobeads profiling for target identification of irreversible kinase inhibitors. ACS Chem Biol. 2017;12:2515–21.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Matsumoto M, Matsuzaki F, Oshikawa K, Goshima N, Mori M, Kawamura Y, et al. A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat Methods. 2017;14:251–8.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Mikawa T, Shibata E, Shimada M, Ito K, Ito T, Kanda H, et al. Phosphoglycerate mutase cooperates with Chk1 kinase to regulate glycolysis. iScience. 2020;23:101306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. J Pharm Exp Ther. 2001;297:114–20.

    CAS  Google Scholar 

  60. 60.

    Yamori T. Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics. Cancer Chemother Pharm. 2003;52:S74–79.

    CAS  Article  Google Scholar 

  61. 61.

    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Mashima T, Ushijima M, Matsuura M, Tsukahara S, Kunimasa K, Furuno A, et al. Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation. Cancer Sci. 2015;106:909–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, et al. Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol. 2009;16:712–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Futamura Y, Kawatani M, Kazami S, Tanaka K, Muroi M, Shimizu T, et al. Morphobase, an encyclopedic cell morphology database, and its use for drug target identification. Chem Biol. 2012;19:1620–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Piotrowski JS, Li SC, Deshpande R, Simpkins SW, Nelson J, Yashiroda Y, et al. Functional annotation of chemical libraries across diverse biological processes. Nat Chem Biol. 2017;13:982–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Julius Lopez for English editing. This work was supported in part by Grant-in-Aid for Scientific Research grant numbers JP21H04720, JP20H05620 and JP20K05857, Grant-in-Aid for Scientific Research on Innovative Areas grant numbers JP17H06412 and JP16H06276, AMED P-CREATE grant number JP20cm0106112h0005.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Osada.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muroi, M., Osada, H. Proteomics-based target identification of natural products affecting cancer metabolism. J Antibiot 74, 639–650 (2021). https://doi.org/10.1038/s41429-021-00437-y

Download citation

Search

Quick links