Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Review Article
  • Published:

Screening study of cancer-related cellular signals from microbial natural products

Abstract

To identify bioactive natural products from various natural resources, such as plants and microorganisms, we investigated programs to screen for compounds that affect several cancer-related cellular signaling pathways, such as BMI1, TRAIL, and Wnt. This review summarizes the results of our recent studies, particularly those involving natural products isolated from microbial resources, such as actinomycetes, obtained from soil samples collected primarily around Chiba, Japan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed F, Sadhu SK, Ishibashi M. Search for bioactive natural products from medicinal plants of Bangladesh. J Nat Med. 2010;64:393–401.

    Article  CAS  PubMed  Google Scholar 

  3. Ishibashi M, Arai MA. Bioactive natural products from myxomycetes having effects on signaling pathways. Heterocycles 2012;85:1299–332.

    Article  CAS  Google Scholar 

  4. Ishibashi M. Bioactive heterocyclic natural products from actinomycetes having effects on cancer-related signaling pathways. In: Kinghorn AD, Falk H, Kobayashi J editors. Progress in the chemistry of organic natural products. Wien: Springer; 2014. p. 147–98.

  5. Abdelfattah MS, Arai MA, Ishibashi M. Bioactive secondary metabolites with unique aromatic and heterocyclic structures obtained from terrestrial actinomycetes species. Chem Pharm Bull. 2016;64:668–75.

    Article  CAS  Google Scholar 

  6. Ishibashi M, Ohtsuki T. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med Res Rev. 2008;28:688–714.

    Article  CAS  PubMed  Google Scholar 

  7. Fuentes RG, Arai MA, Ishibashi M. Natural compounds with Wnt signal modulating activity. Nat Prod Rep. 2015;32:1622–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed F, Ishibashi M. Bioactive natural products with TRAIL-resistance overcoming activity. Chem Pharm Bull. 2016;64:119–27.

    Article  CAS  Google Scholar 

  9. Ishibashi M. Screening for natural products that affect Wnt signaling activity. J Nat Med. 2019;73:697–705.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Avgustinova A, Benitah SA. Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol. 2016;17:643–58.

    Article  CAS  PubMed  Google Scholar 

  11. Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, et al. Targeting BMI1+ cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell. 2017;20:621–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu S, Zhao D, Yan L, Jiang W, Kim JS, Gu B, et al. BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nat Commun. 2018;9:500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang D, Liu HQ, Yang Z, Fan D, Tang QZ. BMI1 in the heart: novel functions beyond tumorigenesis. eBioMedicine. 2021;63:103193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20:29–36.

    Article  CAS  PubMed  Google Scholar 

  15. Dey A, Xiong X, Crim A, Dwivedi SKD, Mustafi SB, Mukherjee P, et al. Evaluating the mechanism and therapeutic potential of PTC-028, a novel inhibitor of BMI-1 function in ovarian cancer. Mol Cancer Ther. 2018;17:39–49.

    Article  CAS  PubMed  Google Scholar 

  16. Nishida Y, Maeda A, Kim MJ, Cao L, Kubota Y, Ishizawa J, et al. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Cancer J. 2017;7:e527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ismail IH, McDonald D, Strickfaden H, Xu Z, Hendzel MJ. A small molecule inhibitor of polycomb repressive complex 1 inhibits ubiquitin signaling at DNA double-strand breaks. J Biol Chem. 2013;288:26944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu J, Hu D, Yang G, Zhou J, Yang C, Gao Y, et al. Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells. J Cell Biochem. 2011;112:1938–48.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Xing Y, Wang Y, He Y, Wang L, Peng S, et al. A novel BMI-1 inhibitor QW24 for the treatment of stem-like colorectal cancer. J Exp Clin Cancer Res. 2019;38:422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kaneta Y, Arai MA, Ishikawa N, Toume K, Koyano T, Kowithayakorn T, et al. Identification of BMI1 promoter inhibitors from Beaumontia murtonii and Eugenia operculata. J Nat Prod. 2017;80:1853–9.

    Article  CAS  PubMed  Google Scholar 

  21. Yokoyama Y, Arai MA, Hara Y, Ishibashi M. Identification of BMI1 promoter inhibitors from Streptomyces sp. IFM-11958. Bioorg Med Chem. 2019;27:2998–3003.

    Article  CAS  PubMed  Google Scholar 

  22. Přikrylová V, Beran M, Sedmera P, Jizba J. Isolation of nonactic acids from Streptomyces griseus fermentation broth by thin-layer and high-performance liquid chromatography. Folia Microbiol. 1994;39:191–6.

    Article  Google Scholar 

  23. Yokoyama Y, Arai MA, Hara Y, Ishibashi M. Nonactic acid derivatives isolated from Streptomyces werraensis IFM12104 in a screening program for BMI1 promoter inhibitory activity. Nat Prod Commun. 2019;14:1934578X19866583.

    CAS  Google Scholar 

  24. Yuan J-X, Zeng Y, Zou C, Zhao P-J. Four new β-lactones from the endophytic Streptomyces sp. T1B1. Phytochem Lett. 2013;6:625–8.

    Article  CAS  Google Scholar 

  25. Smith RM, Peterson WH, McCoy E. Oligomycin, a new antifungal antibiotic. Antibiot Chemother. 1954;4:962–70.

    CAS  Google Scholar 

  26. Salim AA, Tan L, Huang XC, Cho KJ, Lacey E, Hancock JF, et al. Oligomycins as inhibitors of K-Ras plasma membrane localization. Org Bio Chem. 2016;14:711–5.

    Article  CAS  Google Scholar 

  27. Alves LC, Corazza N, Micheau O, Krebs P. The multipacedted role of TRAIL signaling in cancer and immunity. FEBS J. 2020. https://doi.org/10.1111/febs.15637.

  28. Wu GS. TRAIL as a target in anti-cancer therapy. Cancer Lett. 2009;285:1–5.

    Article  CAS  PubMed  Google Scholar 

  29. Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, et al. Sakai. The combination of TRAIL and luteolin enhances apoptosis in human cervical cancer HeLa cells. Biochem Biophys Res Commun. 2005;333:833–8.

    Article  CAS  PubMed  Google Scholar 

  30. Deeb D, Xu YX, Jiang H, Gao X, Janakiraman N, Chapman RA, et al. Curcumin (dieruloylmethane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther. 2003;2:95–103.

    CAS  PubMed  Google Scholar 

  31. Fulda S, Debatin KM. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventie agent resveratrol. Cancer Res. 2004;64:337–46.

    Article  CAS  PubMed  Google Scholar 

  32. Karmakar UK, Ishikawa N, Arai MA, Ahmed F, Koyano T, Kowithayakorn T, et al. Boesenberols, pimarane diterpenes with TRAIL resistance-overcoming activity from Boesenbergia pandurate. J Nat Prod. 2016;79:2075–82.

    Article  CAS  PubMed  Google Scholar 

  33. Toume K, Habu T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. Prenylated flavonoids and resveratrol derivatives isolated from Artocarpus communis with the ability to overcome TRAIL resistance. J Nat Prod. 2015;78:103–10.

    Article  CAS  PubMed  Google Scholar 

  34. Hasegawa H, Yamada Y, Komiyama K, Hayashi M, Ishibashi M, Sunazuka T, et al. A novel natural compound, a cycloanthranilylproline-derivative (Fuligocandin B), sensitizes leukemia cells to TRAIL-induced apoptosis through 15d-PGJ2 production. Blood. 2007;110:1664–74.

    Article  CAS  PubMed  Google Scholar 

  35. Arai MA, Taguchi S, Komatsuzaki K, Uchiyama K, Masuda A, Sampei M, et al. VCP is a target of 5’-I Fuligocandin B and enhances TRAIL-resistance in cancer cells. ChemistryOpen. 2016;5:574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia. 2007;3:535–46.

    Article  CAS  Google Scholar 

  37. Lindhagen E, Nygren P, Larsson R. The fluorometric microculture cytotoxicity assay. Nat Protoc. 2008;3:1364–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ahmed F, Ohtsuki T, Aida W, Ishibashi M. Tyrosine derivatives isolated from Streptomyces sp. IFM 10937 in a screening program for TRAIL-resistance overcoming activity. J Nat Prod. 2008;71:1963–6.

    Article  CAS  PubMed  Google Scholar 

  39. Marfey P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun. 1984;49:591–6.

    Article  CAS  Google Scholar 

  40. Rappa G, Lorico A, Sartorelli AC. Potentiation by novobiocin of the cytotoxic activity of etoposide (VP-16) and teniposide (VM-26). Int J Cancer. 1992;51:780–7.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed F. Search for bioactive natural products with TRAIL-resistance overcoming activity. PhD Dissertation Chiba University. 2010;35–7. https://opac.ll.chiba-u.jp/da/curator/900067243/.

  42. Abdelfattah MS, Elmallah MIY, Mohamed AA, Ishibashi M. Sharkquinone, a new ana-quinonoid tetracene derivative from marine-derived Streptomyces sp. EGY1 with TRAIL resistance-overcoming activity. J Nat Med. 2017;71:564–9.

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Arai MA, Toume K, Ishibashi M. Isolation of resistomycin from a terrestrial actinomycete with TRAIL resistance-overcoming activity. Nat Prod Commun. 2018;13:65–66.

    CAS  Google Scholar 

  44. Abdelfattah MS, Ishikawa N, Karmakar UK, Ishibashi M. Sulfotanone, a new alkyl sulfonic acid derivative from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activity. J Nat Med. 2016;70:266–70.

    Article  CAS  PubMed  Google Scholar 

  45. Yamada H, Shiomi K, Xu Q, Nagai T, Shibata M, Oya I, et al. New glycosidase inhibitors, panosialins D and wD produced by Streptomyces sp. OH-5186. J Antibiot. 1995;48:205–10.

    Article  CAS  Google Scholar 

  46. Aoyagi T, Yagisawa M, Kumagai M, Hamada M, Okami Y, Takeuchi T, et al. An enzyme inhibitor, panosialin, produced by Streptomyces. I. Biological activity, isolation and characterization of panosialin. J Antibiot. 1971;24:86–869.

    Article  Google Scholar 

  47. Shinoda K, Shitara K, Yoshihara Y, Kusano A, Uosaki Y, Ohta S, et al. Panosialins, inhibitors of an α1,3-fucosyltransferase Fuc-TVII, suppress the expression of selectin ligands on U937 cells. Glycoconjugate J. 1998;15:1079–83.

  48. Kwon YJ, Sohn MJ, Oh T, Cho SN, Kim CJ, Kim WG. Panosialins, inhibitors of enoyl-ACP reductase from Streptomyces sp. AN1761. J Microbiol Biotechnol. 2013;23:184–8.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshida T, Maeda A, Tani N, Sakai T. Promoter structure and transcription initiation of the human death receptor 5/TRAIL-R2 gene. FEBS Lett. 2001;507:381–5.

    Article  CAS  PubMed  Google Scholar 

  50. Kikuchi H, Ohtsuki T, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M. Brandisianins A-F, isoflavonoids isolated from Millettia brandisiana in a screening program for death-receptor expression enhancement activity. J Nat Prod. 2007;70:1910–4.

    Article  CAS  PubMed  Google Scholar 

  51. Kikuchi H, Ohtsuki T, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M. Activity of mangosteen xanthones and teleocidin A-2 in death-receptor expression enhancement and tumor necrosis-factor related apoptosis-inducing ligand assays. J Nat Prod. 2010;73:452–5.

    Article  CAS  PubMed  Google Scholar 

  52. Sarker M, Ruiz-Ruiz C, López-Rivas A. Activation of protein kinase C inhibits TRAIL-induced caspases activation, mitochondrial events and apoptosis in a human leukemic T cell line. Cell Death Differ. 2001;8:172–81.

    Article  CAS  PubMed  Google Scholar 

  53. Lim JH, Park J-W, Choi KS, Park YB, Kwon TK. Rottlerin induces apoptosis via death receptor 5 (DR5) upregulation through CHOP-dependent and PKC δ-independent mechanism in human malignant tumor cells. Carcinogenesis. 2009;30:729–36.

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi K, Tabata S, Piras V, Tomita M, Selvarajoo K. Systems biology strategy reveals PKCδ is key for sensitizing TRAIL-resistant human fibrosarcoma. Front Immunol. 2015;5:659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  56. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  57. Koni M, Pinnarò V, Brizzi MF. The Wnt signalling pathway: a tailored target in cancer. Int J Mol Sci. 2020;21:7697.

    Article  CAS  PubMed Central  Google Scholar 

  58. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol. 2020;17:204–32.

    Article  PubMed  Google Scholar 

  59. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  60. Li X, Ohtsuki T, Koyano T, Kowithayakorn T, Ishibashi M. New Wnt/β-catenin signaling inhibitors isolated from Eleutherine palmifolia. Chem Asian J 2009;4:540–7.

    Article  CAS  PubMed  Google Scholar 

  61. Toume K, Kamiya K, Arai MA, Mori N, Sadhu SK, Ahmed F, et al. a potent Wnt signal inhibitory limonoid from Xylocarpus granatum. Org Lett. 2013;15:6106–9.

    Article  CAS  PubMed  Google Scholar 

  62. Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Calotropin: a cardenolide from Calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. ChemBioChem. 2014;15:872–8.

    Article  CAS  PubMed  Google Scholar 

  63. Shono T, Ishikawa N, Toume K, Arai MA, Masu H, Koyano T, et al. Cerasoidine, a bis-aporphine alkaloid isolated from Polyalthia cerasoides during screening for Wnt signal inhibitors. J Nat Prod. 2016;79:2083–8.

    Article  CAS  PubMed  Google Scholar 

  64. Sato T, Arai MA, Yixizhuoma, Hara Y, Koyano T, Kowithayakorn T, et al. Cadinane sesquiterpenoids isolated from Santalum album using a screening program for Wnt signal inhibitory activity. J Nat Med. 2020;74:476–81.

    Article  CAS  PubMed  Google Scholar 

  65. Ohishi K, Toume K, Arai MA, Koyano T, Kowithayakorn T, Mizoguchi T, et al. 9-Hydorxycanthin-6-one, a β-carboline alkaloid from Eurycoma longifolia, is the first Wnt signal inhibitor through activation of GSK3β without depending on CK1α. J Nat Prod. 2015;78:1139–46.

    Article  CAS  PubMed  Google Scholar 

  66. Toume K, Tsukahara K, Ito H, Arai MA, Ishibashi M. Chromomycins A2 and A3 from marine actinomycete with TRAIL resistance-overcoming activity and Wnt signal inhibitory activity. Mar Drugs. 2014;12:3466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kalwat MA, Hwang IH, Macho J, Grzemska MG, Yang JZ, McGlynn K, et al. Chromomycin A2 potently inhibits glucosestimulated insulin secretion from pancreatic β cells. J Gen Physiol. 2018;150:1747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ratovitski EA. Tumor protein (TP)-p53 members as regulators of autophagy in tumor cells upon marine drug exposure. Mar Drugs. 2016;14:154.

    Article  PubMed Central  CAS  Google Scholar 

  69. Hara S, Ishikawa N, Hara Y, Nehira T, Sakai K, Gonoi T, et al. Nabscessins A and B, new aminocyclitol derivatives from Nocardia abscessus IFM 10029T. J Nat Prod. 2017;80:565–8.

    Article  CAS  PubMed  Google Scholar 

  70. Hara Y, Arai MA, Sakai K, Ishikawa N, Gonoi T, Yaguchi T, et al. Dehydropropylpantothenamide isolated by a co-culture of Nocardia tenerifensis IFM 10554T in the presence of animal cells. J Nat Med. 2018;72:280–9.

    Article  CAS  PubMed  Google Scholar 

  71. Hara Y, Arai MA, Toume K, Masu H, Sato T, Komatsu K, et al. Coculture of a pathogenic actinomycete and animal cells to produce nocarjamide, a cyclic nonapeptide with Wnt signal-activating effect. Org Lett. 2018;20:5831–4.

    Article  CAS  PubMed  Google Scholar 

  72. Arai MA, Ochi F, Makita Y, Chiba T, Higashi K, Suganami A, et al. GLI1 inhibitors isolated by target protein oriented natural products isolation (TPO-NAPI) with hedgehog inhibition. ACS Chem Biol. 2018;13:2551–9.

    Article  CAS  PubMed  Google Scholar 

  73. Arai MA, Tateno C, Hosoya T, Koyano T, Kowithayakorn T, Ishibashi M. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg Med Chem. 2008;16:9420–4.

    Article  CAS  PubMed  Google Scholar 

  74. Tsuchiya A, Makita Y, Koyano T, Kowithayakorn T, Ishibashi M, Arai MA. Isolation and evaluation of cardenolides from Lansium domesticum as Notch inhibitors. J Nat Med. 2020;74:758–66.

    Article  CAS  PubMed  Google Scholar 

  75. Arai MA, Akamine R, Hayashi N, Koyano T, Kowithayakorn T, Ishibashi M. The Notch inhibitors isolated from Nerium indicum. J Nat Prod. 2018;81:1235–40.

    Article  CAS  PubMed  Google Scholar 

  76. Arai MA, Makita Y, Yamaguchi Y, Kawano H, Suganami A, Tamura Y, et al. Total synthesis of lindbladione, a Hes1 dimerization inhibitor and neural stem cell activator isolated from Lindbladia tubulina. Sci Rep. 2020;10:21433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arai MA, Morita K, Kawano H, Makita Y, Hashimoto M, Suganami A, et al. Target protein-oriented isolation of Hes1 dimer inhibitors using protein based methods. Sci Rep. 2020;10:1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arai MA, Tanaka M, Tanouchi K, Ishikawa N, Ahmed F, Sadhu SK, et al. Hes1 binding compounds isolated by target protein oriented natural products isolation (TPO-NAPI). J Nat Prod. 2017;80:538–43.

    Article  CAS  PubMed  Google Scholar 

  79. Arai MA, Koryudzu K, Ishibashi M. Inubosin A, B, and C are new acridine alkaloids isolated from Streptomyces sp. IFM 11440 that show Ngn2 promoter activity. J Nat Prod. 2015;78:311–4.

    Article  CAS  PubMed  Google Scholar 

  80. Arai MA, Ishikawa N, Tanaka M, Uemura K, Sugimitsu N, Suganami A, et al. Hes1 dimer inhibitor isolated by target protein oriented natural products isolation (TPO-NAPI) of differentiation activators of neural stem cells. Chem Sci. 2016;7:1514–20.

    Article  CAS  PubMed  Google Scholar 

  81. Arai MA, Ebihara I, Hara Y, Yaguchi T, Ishibashi M. Isolation of nocobactin NAs as Notch signal inhibitors from Nocardia farcinica, a possibility of invasive evolution. J Antibiot. 2021;74:255–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Midori A. Arai (Keio University), Dr. Yasumasa Hara, and all laboratory members for their continuous and valuable efforts in this study. He also thanks Dr. Takao Yaguchi (Medical Mycology Research Center, Chiba University) for the identification of the actinomycete strains. This work was supported by KAKENHI Grant nos. 20H03394 and 19H04640 from the Japan Society for the Promotion of Science, and the Strategic Priority Research Promotion Program of Chiba University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Ishibashi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, M. Screening study of cancer-related cellular signals from microbial natural products. J Antibiot 74, 629–638 (2021). https://doi.org/10.1038/s41429-021-00434-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00434-1

This article is cited by

Search

Quick links