Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Tetrahydropiperic acid (THPA) conjugated cationic hybrid dipeptides as antimicrobial agents

Subjects

Abstract

The present work describes the synthesis of hybrid dipeptides H-Lys-Gpn-PEA, C1; H-Lys-β3,3AC6C-PEA, C2, and THPA conjugated dipeptides, THPA-Lys-Gpn-PEA, C3, and THPA-Lys-β3,3AC6C-PEA, C4. All the peptides were evaluated against both Gram-negative and Gram-positive bacterial strains. Among all, peptide C4 exhibited the most potent activity with MIC 1.56 μM against P. aeruginosa (MTCC 424) and S. aureus (MTCC 737). Further, time-kill kinetics, fluorescence assays, and scanning electron microscopy (SEM) studies were performed in order to understand the mechanism of action and efficacy of peptide C4, The fluorescence assays and SEM images demonstrated the bacterial killing through membrane disruption. The peptide C4 exhibited very low hemolytic activity with negligible cytotoxicity against normal human breast cell line FR2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18:24–30.

    Article  CAS  Google Scholar 

  2. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325:1089–93.

    Article  CAS  Google Scholar 

  3. Wu H, Niu Y, Padhee S, Wang RE, Li Y, Qiao Q, et al. Design and synthesis of unprecedented cyclic γ-AApeptides for antimicrobial development. Chem Sci. 2012;3:2570–5.

    Article  CAS  Google Scholar 

  4. Mercer D, O’Neil D. Peptides as the next generation of antiinfectives. Future Med Chem. 2013;5:315–37.

    Article  CAS  Google Scholar 

  5. Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. 2010;16:3185–203.

    Article  CAS  Google Scholar 

  6. Shankar SS, Benke SN, Nagendra N, Srivastava PL, Thulasiram HV, Gopi HN. Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides. J Med Chem. 2013;56:8468–74.

    Article  CAS  Google Scholar 

  7. Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R. Short hybrid peptides incorporating β-and γ-amino acids as antimicrobial agents. Peptides. 2017;97:46–53.

    Article  CAS  Google Scholar 

  8. Tsubery H, Ofek I, Cohen S, Fridkin M. N-terminal modifications of polymyxin B nonapeptide and their effect on antibacterial activity. Peptides. 2001;22:1675–81.

    Article  CAS  Google Scholar 

  9. Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother. 2005;55:283–8.

    Article  CAS  Google Scholar 

  10. Chongsiriwatana NP, Miller TM, Wetzler M, Vakulenko S, Karlsson AJ, Palecek SP, et al. Short alkylated peptoid mimics of antimicrobial lipopeptides. Antimicrob Agents Chemother. 2011;55:417–20.

    Article  CAS  Google Scholar 

  11. Lee J, Kang D, Choi J, Huang W, Wadman M, Barron AE, et al. Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorg Med Chem Lett. 2018;28:170–3.

    Article  CAS  Google Scholar 

  12. Lehto T, Vasconcelos L, Margus H, Figueroa R, Pooga M, Hällbrink M, et al. Saturated fatty acid analogues of cell-penetrating peptide PepFect14: role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjugate Chem. 2017;28:782–92.

    Article  CAS  Google Scholar 

  13. De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V. Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem. 2015;58:625–39.

    Article  Google Scholar 

  14. Hansen T, Alst T, Havelkova M, Strøm MB. Antimicrobial activity of small β-peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides. J Med Chem. 2010;53:595–606.

    Article  CAS  Google Scholar 

  15. Wang M, Rakesh K, Leng J, Fang W-Y, Ravindar L, Gowda DC, et al. Amino acids/peptides conjugated heterocycles: a tool for the recent development of novel therapeutic agents. Bioorg Chem. 2018;76:113–29.

    Article  CAS  Google Scholar 

  16. Janzowski C, Glaab V, Mueller C, Straesser U, Kamp H, Eisenbrand G. α, β‐Unsaturated carbonyl compounds: induction of oxidative DNA damage in mammalian cells. Mutagenesis. 2003;18:465–70.

    Article  CAS  Google Scholar 

  17. Jayaraj P, Narasimhulu CA, Rajagopalan S, Parthasarathy S, Desikan R. Sesamol: a powerful functional food ingredient from sesame oil for cardioprotection. Food Funct. 2020;11:1198–210.

    Article  Google Scholar 

  18. Kemprai P, Protim Mahanta B, Sut D, Barman R, Banik D, Lal M, et al. Review on safrole: identity shift of the ‘candy shop’ aroma to a carcinogen and deforester. Flavour Fragr J. 2020;35:5–23.

    Article  CAS  Google Scholar 

  19. Zhu X, Wang Y-K, Yang X-N, Xiao X-R, Zhang T, Yang X-W, et al. Metabolic activation of myristicin and its role in cellular toxicity. J Agric Food Chem. 2019;67:4328–36.

    Article  CAS  Google Scholar 

  20. Leite ACL, da Silva KP, de Souza IA, de Araújo JM, Brondani DJ. Synthesis, antitumour and antimicrobial activities of new peptidyl derivatives containing the 1, 3-benzodioxole system. Eur J Med Chem. 2004;39:1059–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance. JuR is thankful to UGC for Senior Research Fellowship (SRF). GS is thankful to ICMR for Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meenu Katoch or Rajkishor Rai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur Rahim, J., Singh, G., Shankar, S. et al. Tetrahydropiperic acid (THPA) conjugated cationic hybrid dipeptides as antimicrobial agents. J Antibiot 74, 480–483 (2021). https://doi.org/10.1038/s41429-021-00419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00419-0

Search

Quick links