Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semi-synthesis of antibacterial dialkylresorcinol derivatives

Abstract

Dialkylresorcinols are a class of antimicrobial natural products produced by a range of bacterial species. Semi-synthetic derivatization of two microbial dialkylresorcinols isolated from a Pseudomonas aurantiaca strain has yielded 21 derivatives, which were tested for antimicrobial activity, revealing several trends in their activity. The presence of aromatic and phenolic hydrogen atoms was crucial for activity, with all derivatives lacking these features possessing greatly reduced activity. On the other hand, derivatives with shorter alkyl chains at C-5 possessed lower MIC values, while one mono-fluorosulfated derivative showed significantly improved activity against several of the test strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kanda N, Ishizaki N, Inoue N, Oshima M, Handa A, Kitahara T. DB-2073, a new alkylresorcinol antibiotic-I. Taxonomy, isolation and characterization. J Antibiot. 1975;28:935–42.

    Article  CAS  Google Scholar 

  2. Schöner TA, Kresovic D, Bode HB. Biosynthesis and function of bacterial dialkylresorcinol compounds. Appl Microbiol Biotechnol. 2015;99:8323–8.

    Article  Google Scholar 

  3. Sankawa U, Shimada H, Yamasaki K. Biosynthesis of 2-hexyl-5-propylresorcinol: biosynthetic incorporation of deuterium from [2-13C, 2-2H3]-acetate. Chem Pharm Bull. 1981;29:3601–5.

    Article  CAS  Google Scholar 

  4. Nowak-Thompson B, et al. 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol. 2003;185:860–9.

    Article  CAS  Google Scholar 

  5. Fuchs SW, et al. Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occuring ketosynthase. Angew Chem. 2013;52:4108–12.

    Article  CAS  Google Scholar 

  6. Kitahara T, Kanda N. DB-2073, a new alkylresorcinol antibiotic-II. The chemical structure of DB-2073. J Antibiot. 1975;28:943–6.

    Article  CAS  Google Scholar 

  7. Anton P, Jolanta L, Anders B. Antimicrobial dialkylresorcinols from Pseudomonas sp. Ki19. J Nat Prod. 2006;69:654–7.

    Article  Google Scholar 

  8. Arisawa M, Ohmura K, Kobayashi A, Morita N. A cytotoxic constituent of Lysimachia japonica THUNB. (Primulaceae) and the structure-activity relationships of related compounds. Chem Pharm Bull 1989;37:2431–4.

    Article  CAS  Google Scholar 

  9. Kato S, Shindo K, Kawai H, Matsuoka M, Mochizuki J. Studies on free radical scavenging substances from microorganisms. J Antibiot 1993;46:1024–6.

    Article  CAS  Google Scholar 

  10. Sophie B, Darko K, Helge BB, Ralf H. Dialkylresorcinols as bacterial signaling molecules. Proc Natl Acad Sci USA. 2015;112:572–7.

    Article  Google Scholar 

  11. Sophie B, Helge BB, Ralf H. Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol 2015;23:521–3.

    Article  Google Scholar 

  12. Covarrubias-Zúñiga A, Avila-Zárraga JG, Arias-Salas D. A total synthesis of the antibiotic DB-2073. Synth Commun 2003;33:3173–81.

    Article  Google Scholar 

  13. Sébastien C, Jean-Pierre F. A simple synthesis of the natural 2,5-dialkylresorcinol free radical scavenger antioxidant: resorstatin. Synth Commun 1997;27:3769–78.

    Article  Google Scholar 

  14. Madhavachary R, Ramachary DB. High-yielding total synthesis of sexually deceptive chiloglottones and antimicrobial dialkylresorcinols through an organocatalytic reductive coupling reaction. Eur J Org Chem. 2014;2014:7317–23.

  15. Yoneyama H, Katsumata R. Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotech Bioch. 2006;70:1060–75.

    Article  CAS  Google Scholar 

  16. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.

    Article  CAS  Google Scholar 

  17. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830:3670–95.

    Article  CAS  Google Scholar 

  18. Barnes EC, Kumara R, Davis RA. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat Prod Rep. 2016;33:372–81.

    Article  CAS  Google Scholar 

  19. Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007;9:767–76.

    Article  CAS  Google Scholar 

  20. Ren YL, Kinghorn AD. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med. 2019;85:802–14.

    Article  CAS  Google Scholar 

  21. Ville A, Viault G, Hélesbeux JJ, Richomme DGP, Séraphin D. Efficient semi-synthesis of natural-(R)-tocotrienols from a renewable vegetal source. J Nat Prod. 2019;82:51–8.

    Article  CAS  Google Scholar 

  22. Deng Y, Tang D, Wang Q-R, Huang S, Fu L-Z. Semi-synthesis, antibacterial activity, and molecular docking study of novel pleuromutilin derivatives bearing cinnamic acids moieties. Arch Pharm Chem Life Sci. 2019;352:e1800266.

    Google Scholar 

  23. Mittal N, Tesfu HH, Hogan AM, Cardona ST, Sorensen JL. Synthesis and antibiotic activity of novel acylated phloroglucinol compounds against methicillin-resistant Staphylococcus aureus. J Antibiot 2019;72:253–9.

    Article  CAS  Google Scholar 

  24. Caprioglio D, et al. O-Methyl phytocannabinoids: Semi-synthesis, analysis in cannabis flowerheads, and biological activity. Planta Med 2019;85:981–6.

    Article  CAS  Google Scholar 

  25. Shi Y, Zaleta Pinet DA, Clark BR. Isolation, identification, and composition of antibacterial dialkylresorcinols from a Chinese Pseudomonas aurantiaca strain. J Nat Prod. 2020;83:194–201.

    Article  CAS  Google Scholar 

  26. Budzikiewicz H, Scholl H, Neuenhaus W, Pulverer G, Korth H. Dialkyl resorcinols from Pseudomonas aureofaciens. Z Naturforsch B. 1980;35B:909–10.

    Article  CAS  Google Scholar 

  27. Liu Z, et al. SuFEx click chemistry enabled late-stage drug functionalization. J Am Chem Soc. 2018;140:2919–25.

    Article  CAS  Google Scholar 

  28. Cheng AV, Wuest WM. Signed, sealed, delivered: conjugate and prodrug strategies as targeted delivery vectors for antibiotics. ACS Infect Dis. 2019;5:816–28.

    Article  Google Scholar 

  29. Rahman M, Kuhn I, Rahman M, Olsson-Liljequist B, Mollby R. Evaluation of a scanner-assisted colorimetric MIC method for susceptibility testing of Gram-negative fermentative bacteria. Appl Environ Microbiol. 2004;70:2398–403.

    Article  CAS  Google Scholar 

  30. Li K, Lin G, Zhu J, Wu H, Sun Q. Antibacterial activity and mechanism of a laccase-catalyzed chitosan-gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control 2019;96:234–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the award from the Research Fund for International Young Scientists (81850410550) from the National Science Foundation of China, and by a grant from the National Basic Research Program of China (2015CB856500). The authors would like to acknowledge Dr. R. Srinivasan for his helpful comments during the preparation of this manuscript. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Clark.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Shi, Y. & Clark, B.R. Semi-synthesis of antibacterial dialkylresorcinol derivatives. J Antibiot 74, 70–75 (2021). https://doi.org/10.1038/s41429-020-0359-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0359-5

Search

Quick links