Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Review Article
  • Published:

Plant growth regulators from mushrooms

Abstract

Plants interact with fungi in their natural growing environments, and relationships between plants and diverse fungal species impact plants in complex symbiotic, parasitic, and pathogenic ways. Over the past 10 years, we have intensively investigated plant growth regulators produced by mushrooms, and we succeeded in finding various regulators from mushroom-forming fungi: (1) fairy chemicals as a candidate family of new plant hormones from Lepista sordida, (2) agrocybynes A to E from fungus Agrocybe praecox that stimulate strawberry growth, (3) armillariols A to C and sesquiterpene aryl esters from genus Armillaria that are allelopathic and cause Arimillaria root disease, and (4) other plant growth regulators from other mushrooms, such as Stropharia rugosoannulata, Tricholoma flavovirens, Hericium erinaceus, Leccinum extremiorientale, Russula vinosa, Pholiota lubrica and Cortinarius caperatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pusztahelyi T, Holb IJ, Pócsi I. Plant-fungal interactions: special secondary metabolites of the biotrophic, necrotrophic, and other specific interactions. In: Mérillon JM, Ramawat KG, editors. Fungal Metabolites. Switzerland: Springer Publishing; 2016. p. 133–90.

  2. Couch HB. Diseases of turfgrasses. 3rd ed. Malabar: Krieger Publishing; 1995.

    Google Scholar 

  3. Smith JD, Jackson N, Woolhouse AR. Fungal diseases of amenity turf grasses. London: Spon Press; 1989.

    Google Scholar 

  4. Shantz HL, Piemeisel RL. Fungus fairy rings in eastern Coloroda and their effect on vegetation. J Agric Res. 1917;11:191–245.

    Google Scholar 

  5. Ramsbottom J. Rate of growth of fungus rings. Nature. 1926;117:158–9.

    Google Scholar 

  6. Evershed H. Fairy rings. Nature. 1884;29:384–5.

    Google Scholar 

  7. Choi JH, Fushimi K, Abe N, Tanaka H, Maeda S, Kawagishi H, et al. Disclosure of the “Fairy” of fairy-ring-forming fungus Lepista sordida. ChemBioChem. 2010;11:1373–7.

    CAS  PubMed  Google Scholar 

  8. Choi JH, Abe N, Tanaka H, Fushimi K, Nishina Y, Kawagishi H, et al. Plant-growth regulator, imidazole-4-carboxamide produced by fairy-ring forming fungus Lepista sordida. J Agric Food Chem. 2010;58:9956–9.

    CAS  PubMed  Google Scholar 

  9. Choi JH, Ohnishi T, Yamakawa Y, Takeda S, Sekiguchi S, Kawagishi H, et al. The source of “fairy rings”: 2-azahypoxanthine and its metabolite found in a novel purine metabolic pathway in plants. Angew Chem Int Ed. 2014;53:1552–5.

    CAS  Google Scholar 

  10. Mitchinson A. Fairy chemicals. Nature 2014;505:298.

    CAS  Google Scholar 

  11. Tobina H, Choi JH, Asai T, Kiriiwa Y, Asakawa T, Kawagishi H, et al. 2-Azahypoxanthine and imidazole-4-carboxamide produced by the fairy-ring-forming fungus increase wheat yield. Field Crop Res. 2014;162:6–11.

    Google Scholar 

  12. Asai T, Choi JH, Ikka T, Fushimi K, Abe N, Kawagishi H, et al. Effect of 2-azahypoxanthine (AHX) produced by the fairy-ring-forming fungus on the growth and the grain yield of rice. JARQ. 2015;49:45–9.

    Google Scholar 

  13. Takemura H, Choi JH, Matsuzaki N, Taniguchi Y, Wu J, Kawagishi H, et al. A fairy chemical, imidazole-4-carboxamide, is produced on a novel purine metabolic pathway in rice. Sci Rep. 2019;9:9899.

    PubMed  PubMed Central  Google Scholar 

  14. Choi JH, Wu J, Sawada A, Takeda S, Takemura H, Kawagishi H, et al. N-Glucosides of fairy chemicals, 2-azahypoxanthine and 2-aza-8-oxohypoxanthine, in rice. Org Lett. 2018;20:312–4.

    CAS  PubMed  Google Scholar 

  15. Choi JH, Matsuzaki N, Wu J, Kotajima M, Hirai H, Kawagishi H, et al. Ribosides and ribotide of a fairy chemical, imidazole-4-carboxamide, as its metabolites in rice. Org Lett. 2019;21:7841–5.

    CAS  PubMed  Google Scholar 

  16. Letham DS, Palni LMS. The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol. 1983;34:163–97.

    CAS  Google Scholar 

  17. Skoog F, Armstrong DJ. Cytokinins. Annu Rew Plant Physiol. 1970;21:359–84.

    CAS  Google Scholar 

  18. Hecht SM, Frye RB, Werner D, Hawrelak DS. On the “activation” of cytokinins. J Biol Chem. 1975;250:7343–51.

    CAS  PubMed  Google Scholar 

  19. Leonard NJ, Hecht SM, Skoog F, Schmitz RY. Cytokinins: synthesis, mass spectra, and biological activity of compounds related to zeatin. Proc Nat Acad Sci USA. 1969;63:175–82.

    CAS  PubMed  Google Scholar 

  20. Matsubara S. Structure-activity relationships of cytokinins. Phytochemistry. 1980;19:2239–53.

    CAS  Google Scholar 

  21. Schmitz RY, Skoog F, Hecht SM, Bock RM, Leonard NJ. Comparison of cytokinin activities of naturally occurring ribonucleosides and corresponding bases. Phytochemistry. 1972;11:1603–10.

    CAS  Google Scholar 

  22. Kawagishi H. Fairy chemicals-a candidate for a new family of plant hormones and possibility of practical use in agriculture. Biosci Biotechnol Biochem. 2018;82:752–8.

    CAS  PubMed  Google Scholar 

  23. Kawagishi H. Are fairy chemicals a new family of plant hormones? Proc Jpn Acad Ser B. 2019;95:29–38.

    CAS  Google Scholar 

  24. Kitano H, Choi JH, Ueda A, Ito H, Kawagishi H, Itami K, et al. Discovery of plant growth stimulants by C-H arylation of 2-azahypoxanthine. Org Lett. 2018;20:5684–7.

    CAS  PubMed  Google Scholar 

  25. Dalton L. Charmed fairy chemical derivatives may work on the farm. CEN Glob Enterp. 2018;96:7.

    Google Scholar 

  26. Ito A, Choi JH, Wu J, Tanaka H, Hirai H, Kawagishi H, et al. Plant growth inhibitors from the culture broth of fairy ring-forming fungus Lepista sordida. Mycoscience. 2017;58:387–90.

    Google Scholar 

  27. Suzui K, Makino T, Otani Y. Agrocybe species causing stunt syndrome of strawberries. Ann Phytopathol Soc Jpn. 1980;46:396. (in Japanese).

    Google Scholar 

  28. Kähkönen MA, Risto H. Hydrolytic enzyme activities, carbon dioxide production and the growth of litter degrading fungi in different soil layers in a coniferous forest in Northern Finland. Eur J Soil Biol. 2011;47:108–13.

    Google Scholar 

  29. Casieri L, Anastasi A, Prigione V, Varese GC. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie van Leeuwenhoek. 2010;98:483–504.

    CAS  PubMed  Google Scholar 

  30. Gramss G, Bergmann H. Microbial competition, lack in macronutrients, and acidity as main obstacles to the transfer of basidiomycetous ground fungi into (organically or heavy-metal contaminated) soils. J Basic Microbiol. 2007;47:309–16.

    CAS  PubMed  Google Scholar 

  31. Kähkönen MA, Lankinen P, Hatakka A. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi. Chemosphere. 2008;72:708–14.

    PubMed  Google Scholar 

  32. Steffen KT, Hatakka A, Hofrichter M. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol. 2002;60:212–7.

    CAS  PubMed  Google Scholar 

  33. Steffen KT, Hofrichter M, Hatakka A. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol. 2000;54:819–25.

    CAS  PubMed  Google Scholar 

  34. Steffen KT, Hofrichter M, Hatakka A. Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzym Micro Technol. 2002;30:550–5.

    CAS  Google Scholar 

  35. Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M. Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation. 2007;18:359–69.

    CAS  PubMed  Google Scholar 

  36. Valentín L, Kluczek-Turpeinen B, Oivanen P, Hattaka A, Steffen K, Tuomela M. Evaluation of basidiomycetous fungi for pretreatment of contaminated soil. J Chem Technol Biotechnol. 2009;84:851–8.

    Google Scholar 

  37. Fushimi K, Anzai K, Tokuyama S, Kiriiwa Y, Matsumoto N, Kawagishi H, et al. Agrocybynes A to E from the culture broth of Agrocybe praecox. Tetrahedron. 2012;68:1262–5.

    CAS  Google Scholar 

  38. Li Z, Wang Y, Jiang B, Li W, Zheng L, Yang X, et al. Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. J Ethnopharmacol. 2016;184:119–27.

    CAS  PubMed  Google Scholar 

  39. Chen CC, Kuo YH, Cheng JJ, Sung PJ, Ni CL, Chen CC, et al. Three new sesquiterpene aryl esters from the mycelium of Armillaria mellea. Molecules. 2015;20:9994–10003.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Geng Y, Zhu S, Lu Z, Xu H, Shi JS, Xu ZH, et al. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms. Int J Med Mushrooms. 2014;16:319–25.

    PubMed  Google Scholar 

  41. Chang CW, Lur HS, Lu MK, Cheng JJ. Sulfated polysaccharides of Armillariella mellea and their anti-inflammatory activities via NF-κB suppression. Food Res Int. 2013;54:239–45.

    CAS  Google Scholar 

  42. Geng Y, Zhu S, Cheng P, Lu ZM, Xu HY, Shi JS, et al. Bioassay-guided fractionation of ethyl acetate extract from Armillaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia. Phytomedicine. 2017;26:55–61.

    CAS  PubMed  Google Scholar 

  43. Zhang S, Liu X, Yan L, Zhang Q, Zhu J, Wang Z, et al. Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea. Molecules. 2015;20:5680–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen YJ, Wu SY, Chen CC, Tsao YL, Hsu NC, Huang HL, et al. Armillaria mellea component armillarikin induces apoptosis in human leukemia cells. J Funct Foods. 2014;6:196–204.

    CAS  Google Scholar 

  45. Donatini B. Armillaria mellea: an adenosine A1 agonist useful against dizziness and a possible anti-ischemic agent. Phytotherapie. 2013;11:39–41.

    CAS  Google Scholar 

  46. Roll-Hansen F. The Armillaria species in Europe. Eur J Pathol. 1985;15:22–31.

    Google Scholar 

  47. Cox KD, Scherm H. Interaction dynamics between saprobic lignicolous fungi and Arimillaria in controlled environments: exploring the potential for competitive exclusion of Armillaria on peach. Biol Control. 2006;37:291–300.

    Google Scholar 

  48. Thomidis T, Exadaktylou E. Effectiveness of cyproconazole to control Armillaria root rot of apple, walnut and kiwifruit. Crop Prot. 2012;36:49–51.

    CAS  Google Scholar 

  49. Robinson-Bax C, Fox RTV. Root rots of herbaceous plants caused by Armillaria mellea. Mycologist 2002;16:21–2.

    Google Scholar 

  50. Ando Y. Study on Armillaria species in Japan. Chiba Mycol Club Bull. 2000;16–17:19–25. (in Japanese).

    Google Scholar 

  51. Ayer WA, Browne LM. Terpenoid metabolites of mushrooms and related basidiomycetes. Tetrahedron 1981;37:2197–248.

    Google Scholar 

  52. Donnelly DMX, Quigley PF, Coveney JD, Polonsky J. Two new sesquiterpene esters from Armillaria mellea. Phytochemistry. 1987;26:3075–7.

    CAS  Google Scholar 

  53. Arnone A, Cardillo R, Nasini G. Structures of melleolides B–D, three antibacterial sesquiterpenoids from Armillaria mellea. Phytochemistry. 1986;25:471–4.

    CAS  Google Scholar 

  54. Donnelly DMX, Hutchinson RM, Coveney D, Yonemitsu M. Sesquiterpene aryl esters from Armillaria mellea. Phytochemistry. 1990;29:2569–72.

    CAS  Google Scholar 

  55. Midland SL, Izac RR, Wing RM, Zaki AI, Munnecke DE, Sims JJ. Melleolide, a new antibiotic from Armillaria mellea. Tetrahedron Lett. 1982;23:2515–8.

    CAS  Google Scholar 

  56. Donnelly DMX, Konishi T, Dunne O, Cremin P. Sesquiterpene aryl esters from Armillaria tabescens. Phytochemistry. 1997;44:1473–8.

    CAS  Google Scholar 

  57. McMorris TC, Nair MSR, Anchel M. Structure of illudol, a sesquiterpenoid triol from Clitocybe illudens. J Am Chem Soc. 1967;89:4562–3.

    CAS  PubMed  Google Scholar 

  58. Nair MSR, Anchel M. Metabolic products of Clitocybe illudens XI. The structure of neoilludol. Tetrahedron Lett. 1975;16:1267–8.

    Google Scholar 

  59. Kobori H, Sekiya A, Yasuda N, Noguchi K, Suzuki T, Kawagishi H, et al. Armillariols A to C from the culture broth of Armillaria sp. Tetrahedron Lett. 2013;54:5481–3.

    CAS  Google Scholar 

  60. Kobori H, Sekiya A, Suzuki T, Choi JH, Hirai H, Kawagishi H. Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod. 2015;78:163–7.

    CAS  PubMed  Google Scholar 

  61. Reddy MD, Kobori H, Mori T, Wu J, Kawagishi H, Watkins EB. Gram-scale, stereoselective synthesis and biological evaluation of (+)-armillariol C. J Nat Prod. 2017;80:2561–5.

    CAS  PubMed  Google Scholar 

  62. Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT. Studies on the chemical constituents of Armillaria mellea mycelium V. Isolation and characterization of armillarilin and armillarinin. Acra Pharm Sin. 1990;25:24–8.

    CAS  Google Scholar 

  63. Yang JS, Chen YW, Feng XZ, Yu DQ, Liang XT. Chemical constituents of Armillaria mellea mycelium. I. Isolation and characterization of armillarin and armillaridin. Planta Med. 1984;50:288–90.

    CAS  PubMed  Google Scholar 

  64. Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT, et al. Isolation and structures of two new sesquiterpenoid aromatic esters: armillarigin and armillarikin. Planta Med. 1989;55:479–81.

    CAS  PubMed  Google Scholar 

  65. Wu J, Kobori H, Kawaide M, Suzuki T, Choi JH, Kawagishi H, et al. Isolation of bioactive steroids from the Stropharia rugosoannulata mushroom and absolute configuration of strophasterol B. Biosci Biotechnol Biochem. 2013;77:1779–81.

    CAS  PubMed  Google Scholar 

  66. Qiu WT, Kobori H, Suzuki T, Choi JH, Deo VK, Kawagishi H, et al. A new compound from the mushroom Tricholoma flavovirens. Biosci Biotechnol Biochem. 2014;78:755–7.

    CAS  PubMed  Google Scholar 

  67. Qiu WT, Kobori H, Wu J, Choi JH, Hirai H, Kawagishi H, et al. Plant growth regulators from the fruiting bodies of Tricholoma flavovirens. Biosci Biotechnol Biochem. 2017;81:441–4.

    CAS  PubMed  Google Scholar 

  68. Kawagishi H, Ando M, Mizuno T. Hericenone A and B as cytotoxic principles from the mushroom Hericium erinaceum. Tetrahedron Lett. 1990;31:373–6.

    CAS  Google Scholar 

  69. Kawagishi H, Ando M, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, et al. Hericenones C, D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum. Tetrahedron Lett. 1991;32:4561–4.

    CAS  Google Scholar 

  70. Kawagishi H, Ando M, Shinba K, Sakamoto H, Yoshida S, Ishiguro Y, et al. Hericenones F, G and H from the mushroom Hericium erinaceum. Phytochemistry. 1992;32:175–8.

    CAS  Google Scholar 

  71. Ueda K, Tsujimori M, Kodani S, Chiba A, Kubo M, Kawagishi H, et al. An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum. Bioorg Med Chem. 2008;16:9467–70.

    CAS  PubMed  Google Scholar 

  72. Kobayashi S, Tamanoi H, Hasegawa Y, Segawa Y, Masuyama A. Divergent synthesis of bioactive resorcinols isolated from the fruiting bodies of Hericium erinaceum: total syntheses of hericenones A, B, and I, hericenols B–D, and erinacerins A and B. J Org Chem. 2014;79:5227–38.

    CAS  PubMed  Google Scholar 

  73. Okamoto K, Shimada A, Shirai R, Sakamoto H, Yoshida S, Kawagishi H, et al. Antimicrobial chlorinated orcinol-derivatives from the mycelia Hericium erinaceum. Phytochemistry. 1993;34:1445–6.

    CAS  Google Scholar 

  74. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, et al. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron. Lett 1994;35:1569–72.

    CAS  Google Scholar 

  75. Kawagishi H, Simada A, Shizuki K, Mori H, Okamoto K, Sakamoto H, et al. Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocycl Commun. 1996;2:51–4.

    CAS  Google Scholar 

  76. Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y, et al. Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1996;37:7399–402.

    CAS  Google Scholar 

  77. Lee EW, Shizuki K, Hosokawa S, Suzuki M, Suganuma H, Kawagishi H, et al. Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem. 2000;64:2402–5.

    CAS  PubMed  Google Scholar 

  78. Kawagishi H, Masui A, Tokuyama S, Nakamura T. Erinacines J and K from the mycelia of Hericium erinaceum. Tetrahedron. 2006;62:8463–6.

    CAS  Google Scholar 

  79. Shimbo M, Kawagishi H, Yokogoshi H. Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutr Res. 2005;25:617–23.

    CAS  Google Scholar 

  80. Kawagishi H, Zhuang C. Bioactive Compounds from mushrooms. Heterocycles. 2007;72:45–52.

    CAS  Google Scholar 

  81. Kawagishi H, Zhuang C. Compounds for dementia from Hericium erinaceum. Drugs Future. 2008;33:149–55.

    CAS  Google Scholar 

  82. Ueda K, Kodani S, Kubo M, Masuno K, Sekiya A, Kawagishi H, et al. Endoplasmic reticulum (ER) stress-suppressive compounds from scrap bed cultivation of the mushroom Hericium erinaceum. Biosci Biotechnol Biochem. 2009;73:1908–10.

    CAS  PubMed  Google Scholar 

  83. Kawagishi H, Shirai R, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y. Erinapyrones A and B from the cultured mycelia of Hericium erinaceum. Chem Lett. 1992;21:2475–6.

    Google Scholar 

  84. Wu J, Tokunaga T, Kondo M, Ishigami K, Tokuyama S, Kawagishi H, et al. Erinaceolactone A to C, from the culture broth of Hericium erinaceus. J Nat Prod. 2015;78:155–8.

    CAS  PubMed  Google Scholar 

  85. Wu J, Uchida K, Ridwan YA, Kondo M, Choi JH, Kawagishi H, et al. Erinachromanes A and B and erinaphenol A from the culture broth of Hericium erinaceus. J Agric Food Chem. 2019;67:3134–9.

    CAS  PubMed  Google Scholar 

  86. Choi JH, Ozawa N, Masuda K, Koyama T, Yazawa K, Kawagishi H. Suppressing the formation of osteoclasts using bioactive components of the edible mushroom Leccinum extremiorientale (L. Vass.) Singer (Agaricomycetideae). Int J Med Mushrooms. 2010;12:401–6.

    CAS  Google Scholar 

  87. Choi JH, Ozawa N, Yazawa K, Nagai K, Hirai H, Kawagishi H. Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron. 2011;67:6649–53.

    CAS  Google Scholar 

  88. Ito A, Wu J, Ozawa N, Choi JH, Hirai H, Kawagishi H. Plant growth regulators from the edible mushroom Leccinum extremiorientale. Mycoscience. 2017;58:383–6.

    Google Scholar 

  89. Matsuzaki N, Wu J, Kawaide M, Choi JH, Hirai H, Kawagishi H, et al. Plant growth regulatory compounds from the mushroom Russula vinosa. Mycoscience. 2016;57:404–7.

    Google Scholar 

  90. Chen WY, Xu LZ. Growth-regulating activity of cinnamamide and betaine cinnamamide on Wheat. Adv J Food Sci Technol. 2015;7:584–8.

    Google Scholar 

  91. Ridwan YA, Wu J, Choi JH, Hirai H, Kawagishi H. A novel plant growth regulator from Pholiota lubrica. Tetrahedron Lett. 2018;59:2559–61.

    CAS  Google Scholar 

  92. Ridwan YA, Wu J, Choi JH, Hirai H, Kawagishi H. Bioactive compounds from the edible mushroom Cortinarius caperatus. Mycoscience. 2018;59:172–5.

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas “Frontier Research on Chemical Communications” from MEXT (No. 17H06402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Kawagishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Kawagishi, H. Plant growth regulators from mushrooms. J Antibiot 73, 657–665 (2020). https://doi.org/10.1038/s41429-020-0352-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0352-z

This article is cited by

Search

Quick links