Abstract
Plants interact with fungi in their natural growing environments, and relationships between plants and diverse fungal species impact plants in complex symbiotic, parasitic, and pathogenic ways. Over the past 10 years, we have intensively investigated plant growth regulators produced by mushrooms, and we succeeded in finding various regulators from mushroom-forming fungi: (1) fairy chemicals as a candidate family of new plant hormones from Lepista sordida, (2) agrocybynes A to E from fungus Agrocybe praecox that stimulate strawberry growth, (3) armillariols A to C and sesquiterpene aryl esters from genus Armillaria that are allelopathic and cause Arimillaria root disease, and (4) other plant growth regulators from other mushrooms, such as Stropharia rugosoannulata, Tricholoma flavovirens, Hericium erinaceus, Leccinum extremiorientale, Russula vinosa, Pholiota lubrica and Cortinarius caperatus.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pusztahelyi T, Holb IJ, Pócsi I. Plant-fungal interactions: special secondary metabolites of the biotrophic, necrotrophic, and other specific interactions. In: Mérillon JM, Ramawat KG, editors. Fungal Metabolites. Switzerland: Springer Publishing; 2016. p. 133–90.
Couch HB. Diseases of turfgrasses. 3rd ed. Malabar: Krieger Publishing; 1995.
Smith JD, Jackson N, Woolhouse AR. Fungal diseases of amenity turf grasses. London: Spon Press; 1989.
Shantz HL, Piemeisel RL. Fungus fairy rings in eastern Coloroda and their effect on vegetation. J Agric Res. 1917;11:191–245.
Ramsbottom J. Rate of growth of fungus rings. Nature. 1926;117:158–9.
Evershed H. Fairy rings. Nature. 1884;29:384–5.
Choi JH, Fushimi K, Abe N, Tanaka H, Maeda S, Kawagishi H, et al. Disclosure of the “Fairy” of fairy-ring-forming fungus Lepista sordida. ChemBioChem. 2010;11:1373–7.
Choi JH, Abe N, Tanaka H, Fushimi K, Nishina Y, Kawagishi H, et al. Plant-growth regulator, imidazole-4-carboxamide produced by fairy-ring forming fungus Lepista sordida. J Agric Food Chem. 2010;58:9956–9.
Choi JH, Ohnishi T, Yamakawa Y, Takeda S, Sekiguchi S, Kawagishi H, et al. The source of “fairy rings”: 2-azahypoxanthine and its metabolite found in a novel purine metabolic pathway in plants. Angew Chem Int Ed. 2014;53:1552–5.
Mitchinson A. Fairy chemicals. Nature 2014;505:298.
Tobina H, Choi JH, Asai T, Kiriiwa Y, Asakawa T, Kawagishi H, et al. 2-Azahypoxanthine and imidazole-4-carboxamide produced by the fairy-ring-forming fungus increase wheat yield. Field Crop Res. 2014;162:6–11.
Asai T, Choi JH, Ikka T, Fushimi K, Abe N, Kawagishi H, et al. Effect of 2-azahypoxanthine (AHX) produced by the fairy-ring-forming fungus on the growth and the grain yield of rice. JARQ. 2015;49:45–9.
Takemura H, Choi JH, Matsuzaki N, Taniguchi Y, Wu J, Kawagishi H, et al. A fairy chemical, imidazole-4-carboxamide, is produced on a novel purine metabolic pathway in rice. Sci Rep. 2019;9:9899.
Choi JH, Wu J, Sawada A, Takeda S, Takemura H, Kawagishi H, et al. N-Glucosides of fairy chemicals, 2-azahypoxanthine and 2-aza-8-oxohypoxanthine, in rice. Org Lett. 2018;20:312–4.
Choi JH, Matsuzaki N, Wu J, Kotajima M, Hirai H, Kawagishi H, et al. Ribosides and ribotide of a fairy chemical, imidazole-4-carboxamide, as its metabolites in rice. Org Lett. 2019;21:7841–5.
Letham DS, Palni LMS. The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol. 1983;34:163–97.
Skoog F, Armstrong DJ. Cytokinins. Annu Rew Plant Physiol. 1970;21:359–84.
Hecht SM, Frye RB, Werner D, Hawrelak DS. On the “activation” of cytokinins. J Biol Chem. 1975;250:7343–51.
Leonard NJ, Hecht SM, Skoog F, Schmitz RY. Cytokinins: synthesis, mass spectra, and biological activity of compounds related to zeatin. Proc Nat Acad Sci USA. 1969;63:175–82.
Matsubara S. Structure-activity relationships of cytokinins. Phytochemistry. 1980;19:2239–53.
Schmitz RY, Skoog F, Hecht SM, Bock RM, Leonard NJ. Comparison of cytokinin activities of naturally occurring ribonucleosides and corresponding bases. Phytochemistry. 1972;11:1603–10.
Kawagishi H. Fairy chemicals-a candidate for a new family of plant hormones and possibility of practical use in agriculture. Biosci Biotechnol Biochem. 2018;82:752–8.
Kawagishi H. Are fairy chemicals a new family of plant hormones? Proc Jpn Acad Ser B. 2019;95:29–38.
Kitano H, Choi JH, Ueda A, Ito H, Kawagishi H, Itami K, et al. Discovery of plant growth stimulants by C-H arylation of 2-azahypoxanthine. Org Lett. 2018;20:5684–7.
Dalton L. Charmed fairy chemical derivatives may work on the farm. CEN Glob Enterp. 2018;96:7.
Ito A, Choi JH, Wu J, Tanaka H, Hirai H, Kawagishi H, et al. Plant growth inhibitors from the culture broth of fairy ring-forming fungus Lepista sordida. Mycoscience. 2017;58:387–90.
Suzui K, Makino T, Otani Y. Agrocybe species causing stunt syndrome of strawberries. Ann Phytopathol Soc Jpn. 1980;46:396. (in Japanese).
Kähkönen MA, Risto H. Hydrolytic enzyme activities, carbon dioxide production and the growth of litter degrading fungi in different soil layers in a coniferous forest in Northern Finland. Eur J Soil Biol. 2011;47:108–13.
Casieri L, Anastasi A, Prigione V, Varese GC. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie van Leeuwenhoek. 2010;98:483–504.
Gramss G, Bergmann H. Microbial competition, lack in macronutrients, and acidity as main obstacles to the transfer of basidiomycetous ground fungi into (organically or heavy-metal contaminated) soils. J Basic Microbiol. 2007;47:309–16.
Kähkönen MA, Lankinen P, Hatakka A. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi. Chemosphere. 2008;72:708–14.
Steffen KT, Hatakka A, Hofrichter M. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol. 2002;60:212–7.
Steffen KT, Hofrichter M, Hatakka A. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol. 2000;54:819–25.
Steffen KT, Hofrichter M, Hatakka A. Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzym Micro Technol. 2002;30:550–5.
Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M. Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation. 2007;18:359–69.
Valentín L, Kluczek-Turpeinen B, Oivanen P, Hattaka A, Steffen K, Tuomela M. Evaluation of basidiomycetous fungi for pretreatment of contaminated soil. J Chem Technol Biotechnol. 2009;84:851–8.
Fushimi K, Anzai K, Tokuyama S, Kiriiwa Y, Matsumoto N, Kawagishi H, et al. Agrocybynes A to E from the culture broth of Agrocybe praecox. Tetrahedron. 2012;68:1262–5.
Li Z, Wang Y, Jiang B, Li W, Zheng L, Yang X, et al. Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. J Ethnopharmacol. 2016;184:119–27.
Chen CC, Kuo YH, Cheng JJ, Sung PJ, Ni CL, Chen CC, et al. Three new sesquiterpene aryl esters from the mycelium of Armillaria mellea. Molecules. 2015;20:9994–10003.
Geng Y, Zhu S, Lu Z, Xu H, Shi JS, Xu ZH, et al. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms. Int J Med Mushrooms. 2014;16:319–25.
Chang CW, Lur HS, Lu MK, Cheng JJ. Sulfated polysaccharides of Armillariella mellea and their anti-inflammatory activities via NF-κB suppression. Food Res Int. 2013;54:239–45.
Geng Y, Zhu S, Cheng P, Lu ZM, Xu HY, Shi JS, et al. Bioassay-guided fractionation of ethyl acetate extract from Armillaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia. Phytomedicine. 2017;26:55–61.
Zhang S, Liu X, Yan L, Zhang Q, Zhu J, Wang Z, et al. Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea. Molecules. 2015;20:5680–97.
Chen YJ, Wu SY, Chen CC, Tsao YL, Hsu NC, Huang HL, et al. Armillaria mellea component armillarikin induces apoptosis in human leukemia cells. J Funct Foods. 2014;6:196–204.
Donatini B. Armillaria mellea: an adenosine A1 agonist useful against dizziness and a possible anti-ischemic agent. Phytotherapie. 2013;11:39–41.
Roll-Hansen F. The Armillaria species in Europe. Eur J Pathol. 1985;15:22–31.
Cox KD, Scherm H. Interaction dynamics between saprobic lignicolous fungi and Arimillaria in controlled environments: exploring the potential for competitive exclusion of Armillaria on peach. Biol Control. 2006;37:291–300.
Thomidis T, Exadaktylou E. Effectiveness of cyproconazole to control Armillaria root rot of apple, walnut and kiwifruit. Crop Prot. 2012;36:49–51.
Robinson-Bax C, Fox RTV. Root rots of herbaceous plants caused by Armillaria mellea. Mycologist 2002;16:21–2.
Ando Y. Study on Armillaria species in Japan. Chiba Mycol Club Bull. 2000;16–17:19–25. (in Japanese).
Ayer WA, Browne LM. Terpenoid metabolites of mushrooms and related basidiomycetes. Tetrahedron 1981;37:2197–248.
Donnelly DMX, Quigley PF, Coveney JD, Polonsky J. Two new sesquiterpene esters from Armillaria mellea. Phytochemistry. 1987;26:3075–7.
Arnone A, Cardillo R, Nasini G. Structures of melleolides B–D, three antibacterial sesquiterpenoids from Armillaria mellea. Phytochemistry. 1986;25:471–4.
Donnelly DMX, Hutchinson RM, Coveney D, Yonemitsu M. Sesquiterpene aryl esters from Armillaria mellea. Phytochemistry. 1990;29:2569–72.
Midland SL, Izac RR, Wing RM, Zaki AI, Munnecke DE, Sims JJ. Melleolide, a new antibiotic from Armillaria mellea. Tetrahedron Lett. 1982;23:2515–8.
Donnelly DMX, Konishi T, Dunne O, Cremin P. Sesquiterpene aryl esters from Armillaria tabescens. Phytochemistry. 1997;44:1473–8.
McMorris TC, Nair MSR, Anchel M. Structure of illudol, a sesquiterpenoid triol from Clitocybe illudens. J Am Chem Soc. 1967;89:4562–3.
Nair MSR, Anchel M. Metabolic products of Clitocybe illudens XI. The structure of neoilludol. Tetrahedron Lett. 1975;16:1267–8.
Kobori H, Sekiya A, Yasuda N, Noguchi K, Suzuki T, Kawagishi H, et al. Armillariols A to C from the culture broth of Armillaria sp. Tetrahedron Lett. 2013;54:5481–3.
Kobori H, Sekiya A, Suzuki T, Choi JH, Hirai H, Kawagishi H. Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod. 2015;78:163–7.
Reddy MD, Kobori H, Mori T, Wu J, Kawagishi H, Watkins EB. Gram-scale, stereoselective synthesis and biological evaluation of (+)-armillariol C. J Nat Prod. 2017;80:2561–5.
Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT. Studies on the chemical constituents of Armillaria mellea mycelium V. Isolation and characterization of armillarilin and armillarinin. Acra Pharm Sin. 1990;25:24–8.
Yang JS, Chen YW, Feng XZ, Yu DQ, Liang XT. Chemical constituents of Armillaria mellea mycelium. I. Isolation and characterization of armillarin and armillaridin. Planta Med. 1984;50:288–90.
Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT, et al. Isolation and structures of two new sesquiterpenoid aromatic esters: armillarigin and armillarikin. Planta Med. 1989;55:479–81.
Wu J, Kobori H, Kawaide M, Suzuki T, Choi JH, Kawagishi H, et al. Isolation of bioactive steroids from the Stropharia rugosoannulata mushroom and absolute configuration of strophasterol B. Biosci Biotechnol Biochem. 2013;77:1779–81.
Qiu WT, Kobori H, Suzuki T, Choi JH, Deo VK, Kawagishi H, et al. A new compound from the mushroom Tricholoma flavovirens. Biosci Biotechnol Biochem. 2014;78:755–7.
Qiu WT, Kobori H, Wu J, Choi JH, Hirai H, Kawagishi H, et al. Plant growth regulators from the fruiting bodies of Tricholoma flavovirens. Biosci Biotechnol Biochem. 2017;81:441–4.
Kawagishi H, Ando M, Mizuno T. Hericenone A and B as cytotoxic principles from the mushroom Hericium erinaceum. Tetrahedron Lett. 1990;31:373–6.
Kawagishi H, Ando M, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, et al. Hericenones C, D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum. Tetrahedron Lett. 1991;32:4561–4.
Kawagishi H, Ando M, Shinba K, Sakamoto H, Yoshida S, Ishiguro Y, et al. Hericenones F, G and H from the mushroom Hericium erinaceum. Phytochemistry. 1992;32:175–8.
Ueda K, Tsujimori M, Kodani S, Chiba A, Kubo M, Kawagishi H, et al. An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum. Bioorg Med Chem. 2008;16:9467–70.
Kobayashi S, Tamanoi H, Hasegawa Y, Segawa Y, Masuyama A. Divergent synthesis of bioactive resorcinols isolated from the fruiting bodies of Hericium erinaceum: total syntheses of hericenones A, B, and I, hericenols B–D, and erinacerins A and B. J Org Chem. 2014;79:5227–38.
Okamoto K, Shimada A, Shirai R, Sakamoto H, Yoshida S, Kawagishi H, et al. Antimicrobial chlorinated orcinol-derivatives from the mycelia Hericium erinaceum. Phytochemistry. 1993;34:1445–6.
Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, et al. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron. Lett 1994;35:1569–72.
Kawagishi H, Simada A, Shizuki K, Mori H, Okamoto K, Sakamoto H, et al. Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocycl Commun. 1996;2:51–4.
Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y, et al. Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1996;37:7399–402.
Lee EW, Shizuki K, Hosokawa S, Suzuki M, Suganuma H, Kawagishi H, et al. Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem. 2000;64:2402–5.
Kawagishi H, Masui A, Tokuyama S, Nakamura T. Erinacines J and K from the mycelia of Hericium erinaceum. Tetrahedron. 2006;62:8463–6.
Shimbo M, Kawagishi H, Yokogoshi H. Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutr Res. 2005;25:617–23.
Kawagishi H, Zhuang C. Bioactive Compounds from mushrooms. Heterocycles. 2007;72:45–52.
Kawagishi H, Zhuang C. Compounds for dementia from Hericium erinaceum. Drugs Future. 2008;33:149–55.
Ueda K, Kodani S, Kubo M, Masuno K, Sekiya A, Kawagishi H, et al. Endoplasmic reticulum (ER) stress-suppressive compounds from scrap bed cultivation of the mushroom Hericium erinaceum. Biosci Biotechnol Biochem. 2009;73:1908–10.
Kawagishi H, Shirai R, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y. Erinapyrones A and B from the cultured mycelia of Hericium erinaceum. Chem Lett. 1992;21:2475–6.
Wu J, Tokunaga T, Kondo M, Ishigami K, Tokuyama S, Kawagishi H, et al. Erinaceolactone A to C, from the culture broth of Hericium erinaceus. J Nat Prod. 2015;78:155–8.
Wu J, Uchida K, Ridwan YA, Kondo M, Choi JH, Kawagishi H, et al. Erinachromanes A and B and erinaphenol A from the culture broth of Hericium erinaceus. J Agric Food Chem. 2019;67:3134–9.
Choi JH, Ozawa N, Masuda K, Koyama T, Yazawa K, Kawagishi H. Suppressing the formation of osteoclasts using bioactive components of the edible mushroom Leccinum extremiorientale (L. Vass.) Singer (Agaricomycetideae). Int J Med Mushrooms. 2010;12:401–6.
Choi JH, Ozawa N, Yazawa K, Nagai K, Hirai H, Kawagishi H. Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron. 2011;67:6649–53.
Ito A, Wu J, Ozawa N, Choi JH, Hirai H, Kawagishi H. Plant growth regulators from the edible mushroom Leccinum extremiorientale. Mycoscience. 2017;58:383–6.
Matsuzaki N, Wu J, Kawaide M, Choi JH, Hirai H, Kawagishi H, et al. Plant growth regulatory compounds from the mushroom Russula vinosa. Mycoscience. 2016;57:404–7.
Chen WY, Xu LZ. Growth-regulating activity of cinnamamide and betaine cinnamamide on Wheat. Adv J Food Sci Technol. 2015;7:584–8.
Ridwan YA, Wu J, Choi JH, Hirai H, Kawagishi H. A novel plant growth regulator from Pholiota lubrica. Tetrahedron Lett. 2018;59:2559–61.
Ridwan YA, Wu J, Choi JH, Hirai H, Kawagishi H. Bioactive compounds from the edible mushroom Cortinarius caperatus. Mycoscience. 2018;59:172–5.
Acknowledgements
This research was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas “Frontier Research on Chemical Communications” from MEXT (No. 17H06402).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wu, J., Kawagishi, H. Plant growth regulators from mushrooms. J Antibiot 73, 657–665 (2020). https://doi.org/10.1038/s41429-020-0352-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41429-020-0352-z
This article is cited by
-
The alkynyl-containing compounds from mushrooms and their biological activities
Natural Products and Bioprospecting (2023)