Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibacterial pyrrolidinyl and piperidinyl substituted 2,4-diacetylphloroglucinols from Pseudomonas protegens UP46

Abstract

In the search for new antibiotic compounds, fractionation of Pseudomonas protegens UP46 culture extracts afforded several known Pseudomonas compounds, including 2,4-diacetylphloroglucinol (DAPG), as well as two new antibacterial alkaloids, 6-(pyrrolidin-2-yl)DAPG (1) and 6-(piperidin-2-yl)DAPG (2). The structures of 1 and 2 were determined by nuclear magnetic resonance spectroscopy and mass spectrometry. Compounds 1 and 2 were found to have antibacterial activity against the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus, with minimal inhibitory concentration (MIC) 2 and 4 μg ml−1, respectively, for 1, and 2 μg ml−1 for both pathogens for 2. The MICs for 1 and 2, against all tested Gram-negative bacteria, were >32 μg ml−1. The half maximal inhibitory concentrations against HepG2 cells for compounds 1 and 2 were 11 and 18 μg ml−1, respectively, which suggested 1 and 2 be too toxic for further evaluation as possible new antibacterial drugs. Stable isotope labelling experiments showed the pyrrolidinyl group of 1 to originate from ornithine and the piperidinyl group of 2 to originate from lysine. The P. protegens acetyl transferase (PpATase) is involved in the biosynthesis of monoacetylphloroglucinol and DAPG. No optical rotation was detected for 1 or 2, and a possible reason for this was investigated by studying if the PpATase may catalyse a stereo-non-specific introduction of the pyrrolidinyl/piperidinyl group in 1 and 2, but unless the PpATase can be subjected to major conformational changes, the enzyme cannot be involved in this reaction. The PpATase is, however, likely to catalyse the formation of 2,4,6-triacetylphloroglucinol from DAPG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Theuretzbacher U, Gottwalt S, Beyer P, Butler M, Czaplewski L, Lienhardt C, et al. Analysis of the clinical antibacterial and antituberculosis pipeline. Lancet Infect Dis. 2019;19:E40–E50.

    CAS  PubMed  Google Scholar 

  2. Walsh UF, Morrissey JP, O’Gara F. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol. 2001;12:289–95.

    CAS  PubMed  Google Scholar 

  3. Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep. 2009;26:1408–46.

    CAS  PubMed  Google Scholar 

  4. Maurhofer M, Keel C, Haas D, Défago G. Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol. 1994;100:221–32.

    CAS  Google Scholar 

  5. Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, Suzui T. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne pathogens. Soil Biol Biochem. 1989;21:723–28.

    CAS  Google Scholar 

  6. Thomashow LS, Weller DM. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol. 1988;170:3499–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeuchi K, Noda N, Katayose Y, Mukai Y, Numa H, Yamada K, et al. Rhizoxin analogs contribute to the biocontrol activity of a newly isolated Pseudomonas strain. Mol Plant-Microbe Interact. 2015;28:333–42.

    CAS  PubMed  Google Scholar 

  8. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, et al. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant–Microbe Interact. 1992;5:4–13.

    CAS  Google Scholar 

  9. Raaijmakers JM, Weller DM, Thomashow LS. Frequency of antibiotic-producing Pseudomonas spp. in natural ecosystems. Appl Environ Microbiol. 1997;63:881–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Isnansetyo A, Cui L, Hiramatsu K, Kamei Y. Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2003;22:545–7.

    CAS  PubMed  Google Scholar 

  11. Reddi TK, Borovkov AV. Mono-, di- and triacetylphloroglucinols from Pseudomonas fluorescens. Khimiya Prirodnykh Soedinenii. 1969;5:133.

    Google Scholar 

  12. Keel C, Weller DM, Natsch A, Défago G, Cook RJ, Thomashow LS. Conservation of the 2,4-Diacetylphloroglucinol Biosynthesis Locus among Fluorescent Pseudomonas Strains from Diverse Geographic Locations. Appl Environ Microbiol. 1996;62:552–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Raaijmakers JM, Weller DM. Natural plant protection by 2,4-diacetylphloroglucinol–producing Pseudomonas spp. in take-all decline soils. Mol Plant–Microbe Interact. 1998;11:144–52.

    CAS  Google Scholar 

  14. Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, et al. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012;8:1–27. e1002784.

    Google Scholar 

  15. Ramette A, Frapolli M, Saux MF-L, Gruffaz C, Meyer J-M, Défago G, et al. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol. 2011;34:180–8.

    CAS  PubMed  Google Scholar 

  16. Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol Biochem. 2004;36:677–85.

    CAS  Google Scholar 

  17. Pohanka A, Broberg A, Johansson M, Kenne L, Levenfors JJ. Pseudotrienic acid A and B, two novel bioactive metabolites from Pseudomonas sp. MF381-IODS. J Nat Prod. 2005;68:1380–5.

    CAS  PubMed  Google Scholar 

  18. Stanier RY, Palleroni NJ, Doudoroff MJ. The aerobic pseudomonads: a taxonomic study. Gen Microbiol. 1966;43:159–271.

    CAS  Google Scholar 

  19. Bjerketorp J, Levenfors JJ, Sahlberg C, Nord C, Andersson PF, Guss B, et al. Antibacterial 3,6-disubstituted 4-hydroxy-5,6-dihydro-2H-pyran-2-ones from Serratia plymuthica MF371-2. J Nat Prod. 2017;80:2997–3002.

    CAS  PubMed  Google Scholar 

  20. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Google Scholar 

  21. Thaning C, Welch CJ, Borowicz JJ, Hedman R, Gerhardson B. Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol Biochem. 2001;33:1817–26.

    CAS  Google Scholar 

  22. Lindhagen E, Nygren P, Larsson R. The fluorometric microculture cytotoxicity assay. Nat Protoc. 2008;3:1364–69.

    CAS  PubMed  Google Scholar 

  23. Emsley P, Lohkamp B, Scott W, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Debreczeni JE, Emsley P. Handling ligands with coot. Acta Crystallogr D Biol Crystallogr. 2012;68:425–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Long F, Nicholls RA, Emsley P, Graaeulis S, Merkys A, Vaitkus A, et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D Struct Biol. 2017;73:112–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pavkov-Keller T, Schmidt NG, Żądło-Dobrowolska A, Kroutil W, Gruber K. Structure and catalytic mechanism of a bacterial friedel–crafts acylase. ChemBioChem. 2019;20:88–95.

    CAS  PubMed  Google Scholar 

  28. Marchand PA, Weller DM, Bonsall RF. Convenient synthesis of 2,4-diacetylphloroglucinol, a natural antibiotic involved in the control of take-all disease of wheat. J Agric Food Chem. 2000;48:1882–87.

    CAS  PubMed  Google Scholar 

  29. Esipov SE, Adanin VM, Baskunov BP, Kiprianova EA, Garagulya AD. New fluoroglucid with antibiotic activity from Pseudomonas aurantiaca. Antibiotiki. 1975;20:1077–81.

    CAS  PubMed  Google Scholar 

  30. Li SG, Tian HY, Ye WC, Jiang RW. Benzopyrans and furoquinoline alkaloids from Melicope pteleifolia. Biochem Syst Ecol. 2011;39:64–67.

    Google Scholar 

  31. Hu LH, Khoo CW, Vittal JJ, Sim KY. Phloroglucinol derivatives from Hypericum japonicum. Phytochemistry. 2000;53:705–9.

    CAS  PubMed  Google Scholar 

  32. Su CR, Kuo PC, Wang ML, Liou MJ, Damu AG, Wu TS. Acetophenone derivatives from acronychia pedunculata. J Nat Prod. 2003;66:990–3.

    CAS  PubMed  Google Scholar 

  33. Chan JA, Shultis EA, Carr SA, DeBrosse CW, Eggleston DS, Francis TA, et al. Novel Phloroglucinols from the Plant Melicope sessiliflora (Rutaceae). J Org Chem. 1989;54:2098–103.

    CAS  Google Scholar 

  34. She GM, Zhang YJ, Yang CR. A new phenolic constituent and a cyanogenic glycoside from Balanophora involucrata (Balanophoraceae). Chem Biodiv. 2013;10:1081–7.

    CAS  Google Scholar 

  35. Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Khuzyasheva DG, Amirov RR. Synthesis of 2-Arylpyrrolidines by Reaction of γ-Ureidoacetals with Benzene-1,3,5-triol. Russ J Org Chem. 2016;52:538–40.

    CAS  Google Scholar 

  36. Isnansetyo A, Horikawa M, Kamei Y. In vitro anti-methicillin-resistant Staphylococcus aureus activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. J Antimicrob Chemother. 2001;47:724–25.

    CAS  PubMed  Google Scholar 

  37. Syed B, Nagendra Prasad MN, Mohan Kumar K, Satish S. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis. Sc Tot Environ. 2018;637–638:274–81.

    Google Scholar 

  38. Bangera MG, Thomashow LS. Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol. 1999;181:3155–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Achkar J, Xian M, Zhao H, Frost JW. Biosynthesis of phloroglucinol. J Am Chem Soc. 2005;127:5332–33.

    CAS  PubMed  Google Scholar 

  40. Hayashi A, Saitou H, Mori T, Matano I, Sugisaki H, Maruyama K. Molecular and catalytic properties of monoacetylphloroglucinol acetyltransferase from Pseudomonas sp. YGJ3. Biosci Biotechn Biochem. 2014;76:559–66.

    Google Scholar 

  41. Yang F, Cao Y. Biosynthesis of phloroglucinol compounds in microorganisms—review. Appl Microbiol Biotechnol. 2012;93:487–95.

    CAS  PubMed  Google Scholar 

  42. Schmidt NG, Pavkov-Keller T, Richter N, Wiltschi B, Gruber K, Kroutil W. Biocatalytic friedel–crafts acylation and fries reaction. Angew Chem Int Ed 2017;56:7615–9.

    CAS  Google Scholar 

  43. Żądło-Dobrowolska A, Schmidt NG, Kroutil W. Promiscuous activity of C-acyltransferase from Pseudomonas protegens: synthesis of acetanilides in aqueous buffer. Chem Commun 2018;54:3387.

    Google Scholar 

  44. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44:D646–D653.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ultupharma AB is gratefully acknowledged for funding of JJL, JB, CN, BG, and AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Broberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levenfors, J.J., Nord, C., Bjerketorp, J. et al. Antibacterial pyrrolidinyl and piperidinyl substituted 2,4-diacetylphloroglucinols from Pseudomonas protegens UP46. J Antibiot 73, 739–747 (2020). https://doi.org/10.1038/s41429-020-0318-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0318-1

Search

Quick links