Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of a multidrug-resistant ST 27 Escherichia coli co-harboring blaNDM-1, mcr-1, and fosA3 from a patient in China

Abstract

In this study, we report a clinical isolate of a carbapenem-, colistin-, and fosfomycin-resistant Escherichia coli isolate DC-3737 co-harboring blaNDM-1, mcr-1, and fosA3 from an inpatient in China. Antimicrobial susceptibility testing, polymerase chain reaction, multi-locus sequence typing, conjugation experiment, and Southern blot hybridization were performed on E. coli DC-3737 isolated from the wound. Plasmid analysis is presented and the locations of blaNDM-1, mcr-1, fosA3, and other resistance genes were identified as well. E. coli DC-3737 was resistant to ampicillin, ceftriaxone, ceftazidime, ciprofloxacin, levofloxacin, gentamicin, tobramycin, trimethoprim–sulfamethoxazole, imipenem, meropenem, ertapenem, fosfomycin and colistin, and with intermediate susceptibility to amikacin. It was typed as sequence type 27. The isolate possessed blaNDM-1, mcr-1, fosA3, blaCTX-M-9, blaTEM-1, aac (6′)-Ib-cr and sul1 simultaneously. In addition, the mutations in quinolone resistance-determinant regions (QRDRs) such as Ser83Leu and Asp87Asn in gyrA, and Ser80Ile in parC were detected. Conjugation assays revealed that blaNDM-1, fosA3, sul1, mcr-1, and blaCTX-M-9 genes could successfully transfer their resistance phenotype to E. coli strain J53. Plasmid analysis and Southern hybridization showed that DC-3737 possessed Z-type self-transmissible plasmid bearing blaNDM-1, fosA3, and sul1. Moreover, mcr-1, blaCTX-M-9, and blaTEM-1 were located on a ~60-kb IncFIB type self-transmissible plasmid. This is the first report of blaNDM-1, mcr-1 and fosA3 co-harboring in E. coli in China. Moreover, it is also the first description of the co-harboring of blaNDM and fosA3 in a single Z plasmid in Enterobacteriaceae species. The identification of E. coli DC-3737 co-harboring blaNDM-1, mcr-1, and fosA3 in this study highlights the need to increase epidemiologic surveillance and the need for new classes of antibiotics to address multidrug-resistant bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Lange F, Pfennigwerth N, Hofken LM, Gatermann SG, Kaase M. Characterization of mutations in Escherichia coli PBP2 leading to increased carbapenem MICs. J Antimicrob Chemother. 2019;74:571–6.

    Article  CAS  Google Scholar 

  2. Ji X, Zheng B, Berglund B, Zou H, Sun Q, Chi X, et al. Dissemination of extended-spectrum beta-lactamase-producing Escherichia coli carrying mcr-1 among multiple environmental sources in rural China and associated risk to human health. Environ Pollut. 2019;251:619–27.

    Article  CAS  Google Scholar 

  3. Bratu S, Brooks S, Burney S, Kochar S, Gupta J, Landman D, et al. Detection and spread of Escherichia coli possessing the plasmid-borne carbapenemase KPC-2 in Brooklyn, New York. Clin Infect Dis. 2007;44:972–5.

    Article  Google Scholar 

  4. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54.

    Article  CAS  Google Scholar 

  5. Naim H, Rizvi M, Azam M, Gupta R, Taneja N, Shukla I, et al. Alarming emergence, molecular characterization, and outcome of bla NDM-1 in patients infected with multidrug-resistant Gram-negative bacilli in a tertiary care hospital. J Lab Physicians. 2017;9:170–6.

    Article  CAS  Google Scholar 

  6. Hu Y, Liu L, Zhang X, Feng Y, Zong Z. In vitro activity of neomycin, streptomycin, paromomycin and apramycin against carbapenem-resistant Enterobacteriaceae clinical strains. Front Microbiol. 2017;8:2275.

    Article  Google Scholar 

  7. Tafaj S, Gona F, Kapisyzi P, Cani A, Hatibi A, Bino S, et al. Isolation of the first New Delhi metallo-β-lactamase-1 (NDM-1)-producing and colistin-resistant Klebsiella pneumoniae sequence type ST15 from a digestive carrier in Albania, May 2018. J Glob Antimicrob Resist. 2019;17:142–4.

    Article  Google Scholar 

  8. Falagas ME, Rafailidis PI. Re-emergence of colistin in today’s world of multidrug-resistant organisms: personal perspectives. Expert Opin Investig Drugs. 2008;17:973–81.

    Article  CAS  Google Scholar 

  9. Cattoir V, Guerin F. How is fosfomycin resistance developed in Escherichia coli? Future Microbiol. 2018;13:1693–6.

    Article  CAS  Google Scholar 

  10. Qureshi ZA, Hittle LE, O’Hara JA, Rivera JI, Syed A, Shields RK, et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis. 2015;60:1295–303.

    Article  Google Scholar 

  11. Yao X, Doi Y, Zeng L, Lv L, Liu JH. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis. 2016;16:288–9.

    Article  CAS  Google Scholar 

  12. Bi W, Li B, Song J, Hong Y, Zhang X, Liu H, et al. Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum beta-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China. Int J Antimicrob Agents. 2017;50:29–34.

    Article  CAS  Google Scholar 

  13. Qu TT, Shi KR, Ji JS, Yang Q, Du XX, Wei ZQ, et al. Fosfomycin resistance among vancomycin-resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int J Antimicrob Agents. 2014;43:361–5.

    Article  CAS  Google Scholar 

  14. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  Google Scholar 

  15. Hornsey M, Betts JW, Mehat JW, Wareham DW, van Vliet AHM, Woodward MJ, et al. Characterization of a colistin-resistant Avian Pathogenic Escherichia coli ST69 isolate recovered from a broiler chicken in Germany. J Med Microbiol. 2019;68:111–4.

    Article  CAS  Google Scholar 

  16. Principe L, Piazza A, Mauri C, Anesi A, Bracco S, Brigante G, et al. Multicenter prospective study on the prevalence of colistin resistance in Escherichia coli: relevance of mcr-1-positive clinical isolates in Lombardy, Northern Italy. Infect Drug Resist. 2018;11:377–85.

    Article  CAS  Google Scholar 

  17. Cao XL, Shen H, Xu YY, Xu XJ, Zhang ZF, Cheng L, et al. High prevalence of fosfomycin resistance gene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010-2014. Epidemiol Infect. 2017;145:818–24.

    Article  CAS  Google Scholar 

  18. CLSI. Performance standard for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.

  19. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.

    Article  CAS  Google Scholar 

  20. Moran RA, Anantham S, Pinyon JL, Hall RM. Plasmids in antibiotic susceptible and antibiotic resistant commensal Escherichia coli from healthy Australian adults. Plasmid. 2015;80:24–31.

    Article  CAS  Google Scholar 

  21. Cao L, Li X, Xu Y, Shen J. Prevalence and molecular characteristics of mcr-1 colistin resistance in Escherichia coli: isolates of clinical infection from a Chinese University Hospital. Infect Drug Resist. 2018;11:1597–603.

    Article  CAS  Google Scholar 

  22. Kelly AM, Mathema B, Larson EL. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents. 2017;50:127–34.

    Article  CAS  Google Scholar 

  23. Liu BT, Liao XP, Yue L, Chen XY, Li L, Yang SS, et al. Prevalence of beta-lactamase and 16S rRNA methylase genes among clinical Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from animals. Micro Drug Resist. 2013;19:237–45.

    Article  Google Scholar 

  24. Zhong LL, Phan HTT, Shen C, Vihta KD, Sheppard AE, Huang X, et al. High rates of human fecal carriage of mcr-1-positive multidrug-resistant Enterobacteriaceae emerge in China in association with successful plasmid families. Clin Infect Dis. 2018;66:676–85.

    Article  CAS  Google Scholar 

  25. Poirel L, Dortet L, Bernabeu S, Nordmann P. Genetic features of bla NDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2011;55:5403–7.

    Article  CAS  Google Scholar 

  26. Rahman M, Shukla SK, Prasad KN, Ovejero CM, Pati BK, Tripathi A, et al. Prevalence and molecular characterisation of New Delhi metallo-beta-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India. Int J Antimicrob Agents. 2014;44:30–37.

    Article  CAS  Google Scholar 

  27. Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E, Sidjabat HE. Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their bla NDM genetic contexts. Antimicrob Agents Chemother. 2016;60:136–41.

    Article  CAS  Google Scholar 

  28. Poirel L, Schrenzel J, Cherkaoui A, Bernabeu S, Renzi G, Nordmann P. Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. J Antimicrob Chemother. 2011;66:1730–3.

    Article  CAS  Google Scholar 

  29. Sun J, Li XP, Yang RS, Fang LX, Huo W, Li SM, et al. Complete nucleotide sequence of an IncI2 plasmid coharboring bla CTX-M-55 and mcr-1. Antimicrob Agents Chemother. 2016;60:5014–7.

    Article  CAS  Google Scholar 

  30. Rumi MV, Mas J, Elena A, Cerdeira L, Munoz ME, Lincopan N, et al. Co-occurrence of clinically relevant beta-lactamases and MCR-1 encoding genes in Escherichia coli from companion animals in Argentina. Vet Microbiol. 2019;230:228–34.

    Article  CAS  Google Scholar 

  31. Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine. 2017;19:98–106.

    Article  Google Scholar 

  32. Suwantarat N, Rudin SD, Marshall SH, Hujer AM, Perez F, Hujer KM, et al. Infections caused by fluoroquinolone-resistant Escherichia coli following transrectal ultrasound-guided biopsy of the prostate. J Glob Antimicrob Resist. 2014;2:71–76.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Natural Science Foundation of China (no.81171614) and the Planned Science and Technology Project of Wenzhou (no. Y20170204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tieli Zhou or Jianming Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No samples were collected specifically for this research. The patient’s next of kin had provided written informed consent for details to be used in the paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Fang, R., Wu, Q. et al. Emergence of a multidrug-resistant ST 27 Escherichia coli co-harboring blaNDM-1, mcr-1, and fosA3 from a patient in China. J Antibiot 73, 636–641 (2020). https://doi.org/10.1038/s41429-020-0306-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0306-5

This article is cited by

Search

Quick links