Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clonocoprogens A, B and C, new antimalarial coprogens from the Okinawan fungus Clonostachys compactiuscula FKR-0021

Abstract

Three new antimalarial compounds, clonocoprogens A, B, and C, were isolated from the static culture of an Okinawan fungus, Clonostachys compactiuscula FKR-0021. These compounds were new analogs of N14-palmitoylcoprogen, reported as a siderophore. They showed moderate antimalarial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with IC50 values ranging from 1.7 to 9.9 µM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization. World Malaria Report 2019. World Health Organization. https://www.who.int/publications-detail/world-malaria-report-2019. 2019.

  2. Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017;23:917–28.

    Article  CAS  Google Scholar 

  3. Hayashi Y, Fukasawa W, Hirose T, Iwatsuki M, Hokari R, Ishiyama A, et al. Kozupeptins, antimalarial agents produced by Paracamarosporium species: isolation, structural elucidation, total synthesis, and bioactivity. Org Lett. 2019;21:2180–4.

    Article  CAS  Google Scholar 

  4. Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, et al. In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A–C, produced by Penicillium sp. FKI-4410. J Antibiot. 2011;64:183–8.

    Article  CAS  Google Scholar 

  5. Iwatsuki M, Nishihara-Tsukashima A, Ishiyama A, Namatame M, Watanabe Y, Handasah S, et al. Jogyamycin, a new antiprotozoal aminocyclopentitol antibiotic, produced by Streptomyces sp. a-WM-JG16.2. J Antibiot. 2012;65:169–71.

    Article  CAS  Google Scholar 

  6. Anke H, Kinn J, Bergquist K, Sterner O. Production of siderophores by strains of the genus Trichoderma. Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol Met. 1991;4:176–80.

    Article  CAS  Google Scholar 

  7. Musgrave OC, Curvularin. Part I. Isolation and partial characterisation of a metabolic product from a new species of Curvularia. Chem Soc. 1956; 4301–5.

  8. Ricardo FR, James BG, Jinx C, Carol AS. Ophiocerins A-D and ophioceric acid: tetrahydropyran derivatives and an African sesquiterpenoid from the freshwater aquatic fungus Ophioceras venezuelense. J Nat Prod. 2005;68:701–5.

    Article  Google Scholar 

  9. Bao J, Zhang XY, Dong JJ, Xu XY, Nong XH, Qi SH, et al. Cyclopentane-condensed chromones from marine-derived fungus Penicillium oxalicum. Chem Lett. 2014;43:837–9.

    Article  CAS  Google Scholar 

  10. Shiina I, Kawakita Y. The effective use of substituted benzoic anhydrides for the synthesis of carboxamides. Tetrahedron. 2004;60:4729–33.

    Article  CAS  Google Scholar 

  11. Szymanski W, Zwolinska M, Ostaszewski R. Studies on the application of the Passerini reaction and enzymatic procedures to the synthesis of tripeptide mimetics. Tetrahedron. 2007;63:7647–53.

    Article  CAS  Google Scholar 

  12. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997;25:3389–402.

    Article  CAS  Google Scholar 

  13. Hawksworth DL, Punithalingam E. New and interesting microfungi from Slapton, South Devonshire: Deuteromycotina II. Trans Br Mycol Soc. 1975;64:89–9.

    Article  Google Scholar 

  14. Clay BF, Michael DB, William S. Structure of triornicin, a new siderophore. Biochemistry. 1981;20:2436–8.

    Article  Google Scholar 

  15. Mahbubul AFJ, Steve KL, der Dickvan H. Siderophore mediated Iron (III) uptake in Gliocladium virens: 1. properties of cis-fusarinine, trans-fusarmine, dimerum acid, and their ferric complexes. J Inorg Biochem. 1986;28:417–30.

    Article  Google Scholar 

  16. Harada K, Fujii K, Hayashi K, Suzuki M, Ikai Y, Oka H. Application of D,L-FDLA derivatization to determination of absolute configuration of constituent amino acids in peptide by advanced Marfey’s method. Tetrahedron Lett. 1996;37:3001–4.

    Article  CAS  Google Scholar 

  17. Nonaka K, Kaifuchi S, Ōmura S, Masuma R. Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience. 2013;54:42–53.

    Article  Google Scholar 

  18. Nonaka K, Miyazaki H, Iwatsuki M, Shiomi K, Tomoda H, Omura S, et al. Staphylotrichum boninense, a new hyphomycete (Chaetomiaceae) from soils in the Bonin Islands, Japan. Mycoscience. 2012;53:312–8.

    Article  Google Scholar 

  19. Otoguro K, Kohana A, Manabe C, Ishiyama A, Ui H, Shiomi K, et al. Potent antimalarial activities of polyether antibiotic, X-206. J Antibiot. 2001;54:658–63.

    Article  CAS  Google Scholar 

  20. Otoguro K, Ui H, Ishiyama A, Arai N, Kobayashi M, Takahashi Y, et al. In vitro antimalarial activities of the microbial metabolites. J Antibiot. 2003;56:322–4.

    Article  Google Scholar 

  21. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res. 2016;23:3984–99.

    Article  CAS  Google Scholar 

  22. Anteloa L, Hof C, Welzel K, Eisfeld K, Sterner O, Anke H. Siderophores produced by Magnaporthe grisea in the presence and absence of iron. Z Naturforsch C. 2006;61c:461–4.

    Article  Google Scholar 

  23. Jalal MAF, Van der Helm D. Siderophores of highly phytopathogenic Alternaria lonoipes. Structures of hydroxycoprogens. Biol Met. 1989;2:11–7.

    Article  CAS  Google Scholar 

  24. Ferrer P, Vega-Rodriguez J, Tripathi AK, Jacobs-Lorena M, Sullivan DJ Jr. Antimalarial iron chelator FBS0701 blocks transmission by Plasmodium falciparum gametocyte activation inhibition. Antimicrob Agents Chemother. 2015;59:1418–26.

    Article  Google Scholar 

  25. Gordeuk VR, Thuma PE, Brittenham GM, Zulu S, Swimwanza G, Mhangu A, et al. Iron chelation with desferrioxamine B in adults with asymptomatic Plasmodium falciparum parasitemia. Blood. 1992;79:308–12.

    Article  CAS  Google Scholar 

  26. Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, et al. A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Stem Cell Res. 2016;10:239–47.

    Google Scholar 

Download references

Acknowledgements

We thank Dr K. Nagai and Ms N. Sato (School of Pharmacy, Kitasato University) for various instrumental analyses. We thank Dr T. Nakashima (Kitasato Institute for Life Sciences, Kitasato University) for ESI-MS/MS analysis. We thank Dr A. Také (School of Medicine, Kitasato University) for useful suggestion concerning the experiments. This study was supported by Okinawan Create Leading Projects in Growing Fields 2017–2019, OKINAWA Prefectural Government. This study was also partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from the Japan Agency for Medical Research & Development (AMED) under grant number JP19am0101096. This research was also partially supported by AMED under grant number 18ae0101047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Iwatsuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchi, T., Watanabe, Y., Nonaka, K. et al. Clonocoprogens A, B and C, new antimalarial coprogens from the Okinawan fungus Clonostachys compactiuscula FKR-0021. J Antibiot 73, 365–371 (2020). https://doi.org/10.1038/s41429-020-0292-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0292-7

This article is cited by

Search

Quick links