Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antifungal peptides produced by actinomycetes and their biological activities against plant diseases

Abstract

Antibacterial peptides are a class of naturally occurring peptides produced by eukaryotes and prokaryotes. Some of them exhibit broad-spectrum antifungal activity. Antifungal peptides (AFPs) can be developed as antibiotic to control fungal infections in agriculture due to their different antifungal mechanisms. As actinomycetes are still one of the most important sources of novel antibiotics, in this review, the mechanisms of action of AFPs are explained. Characterization of several AFPs produced by actinomycetes and their biological activities against plant diseases are summarized. Furthermore, the pathway for total synthesis of naturally occurring cyclodepsipeptide, valinomycin, is proposed. Finally, the pathway for biosynthesis of kutzneride 2 is proposed and the structure–activity relationship of kutznerides is discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2010;270:1–11.

    Article  CAS  Google Scholar 

  2. Someya N. Biological control of fungal plant diseases using antagonistic bacteria. J Gen Plant Pathol. 2008;74:459–60.

    Article  Google Scholar 

  3. Pujari JD, Yakkundimath R, Byadgi AS. Image processing based detection of fungal diseases in plants. Procedia Comput Sci. 2015;46:1802–8.

    Article  Google Scholar 

  4. Cohen Y, Belausov E, Maymon M, Elazar M, Shulman I, Saada D, et al. Fusarium mangiferae localization in planta during initiation and development of mango malformation disease. Plant Pathol. 2017;66:924–33.

    Article  Google Scholar 

  5. Jiang C-H, Liao M-J, Wang H-K, Zheng M-Z, Xu J-J, Guo J-H. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol Control. 2018;126:147–57.

    Article  Google Scholar 

  6. Boukaew S, Prasertsan P, Troulet C, Bardin M. Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl. 2017;62:793–803.

    Article  CAS  Google Scholar 

  7. Dorrance AE, Mills D, Robertson AE, Draper MA, Giesler L, Tenuta A. Phytophthora root and stem rot of soybean. Plant Health Instr. 2007. https://doi.org/10.1094/PHI-I-2007-0830-07.

  8. Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol. 2007;8:1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Dorrance AE, Berry SA, Anderson TR, Meharg C. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog. 2008;9:35.

    Article  Google Scholar 

  10. Ajilogba CF, Babalola OO. Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci. 2013;18:117–27.

    Article  PubMed  Google Scholar 

  11. Ploetz RC. Fusarium wilt of banana. Phytopathology. 2015;105:1512–21.

    Article  PubMed  Google Scholar 

  12. Ploetz RC. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653–6.

    Article  PubMed  Google Scholar 

  13. Zain ME. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 2011;15:129–44.

    Article  CAS  Google Scholar 

  14. Agrios GN. Plant pathology. 5th ed. New York: Academic Press; 2005.

    Google Scholar 

  15. Borad V, Sriram S. Pathogenesis-related proteins for the plant protection. Asian J Exp Sci. 2008;22:189–96.

    Google Scholar 

  16. Fravel DR. Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol. 1988;26:75–91.

    Article  CAS  Google Scholar 

  17. Malacrinò A, Seng KH, An C, Ong S, O’Rourke ME. Integrated pest management for yard-long bean (Vigna unguiculata subsp. Sesquipedalis) in Cambodia. Crop Protect. 2019. https://doi.org/10.1016/j.cropro.2019.05.005. (In press)

  18. Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. 2009;2:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shlaes DM, Projan SJ Antimicrobial resistance versus the discovery and development of new antimicrobials. In: Mayers D, editor. Antimicrobial Drug Resistance. New York: Humana Press; 2009. p. 43–50.

  20. Davies J. Where have all the antibiotics gone? Can J Infect Dis Med Microbiol. 2006;17:287–90.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 2011;366:1987–98.

    Article  Google Scholar 

  22. Donley N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ Health 2019;18:44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frederiks C, Wesseler JH. A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Manag Sci. 2019;75:87–103.

    Article  CAS  PubMed  Google Scholar 

  24. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36:697–705.

    Article  PubMed  Google Scholar 

  25. Thakur D, Baishya M, Sarma B, Bora TC, Saikia R. Antimicrobial resistance in gram positive and gram negative bacteria progress and challenges. In: Saikia R, editor. Microbial Biotechnology. India: New India Publishing Agency; 2008. p. 349–75.

  26. Oancea S. An overview of conventional and alternative strategies for developing new antibacterial agents. Acta Chim Slov. 2010;57:630–42.

    CAS  PubMed  Google Scholar 

  27. Taylor PL, Wright GD. Novel approaches to discovery of antibacterial agents. Anim Health Res Rev. 2008;9:237–46.

    Article  PubMed  Google Scholar 

  28. Bowden GH. Actinomyces, Propionibacterium propionicus, and Streptomyces. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996.

  29. Booth J. Diseases caused by actinomyces species. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. Boston: Elsevier; 2007. p. 1–4.

  30. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol. 1943;46:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, et al. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol. 2015;33:15–26.

    Article  CAS  PubMed  Google Scholar 

  33. Subramani R, Aalbersberg W. Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res. 2012;167:571–80.

    Article  CAS  PubMed  Google Scholar 

  34. Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32:143–71.

    Article  CAS  PubMed  Google Scholar 

  35. Gaiser RA, Rivas L, López P. Production of eukaryotic antimicrobial peptides by bacteria-a review. Commun Curr Res Technol Adv. 2011;11:992–1002.

    Google Scholar 

  36. Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92.

    Article  CAS  PubMed  Google Scholar 

  37. Ling-juan Z, Richard LG. Antimicrobial peptides. Curr Biol. 2016;26:R14–R9.

    Article  CAS  Google Scholar 

  38. Bradshaw JP. Cationic antimicrobial peptides. BioDrugs. 2003;17:233–40.

    Article  CAS  PubMed  Google Scholar 

  39. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18:24–30.

    Article  CAS  PubMed  Google Scholar 

  40. Dhanasekaran D, Thajuddin N, Panneerselvam A. Applications of actinobacterial fungicides in agriculture and medicine. Fungic Plant Anim. 2012;2:29–54.

    Google Scholar 

  41. Meng S, Xu H, Wang F. Research advances of antimicrobial peptides and applications in food industry and agriculture. Curr Protein Pept Sci. 2010;11:264–73.

    Article  CAS  PubMed  Google Scholar 

  42. Le C-F, Fang C-M, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:e02340–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry. 1992;31:12416–23.

    Article  CAS  PubMed  Google Scholar 

  44. Hancock RE, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43:1317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys. 1977;10:233–40.

    Article  Google Scholar 

  46. Cabib E, Arroyo J. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol. 2013;11:648–55.

    Article  CAS  PubMed  Google Scholar 

  47. Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. Bioessays. 2006;28:799–808.

    Article  PubMed  Google Scholar 

  48. Free SJ. Fungal cell wall organization and biosynthesis. In: Friedmann T, Dunlap JC, Stephen FG, editors. Advances in Genetics. New York: Academic Press; 2013. p. 33–82.

  49. Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol. 2010;13:416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hori M, Eguchi J, Kakiki K, Misato T. Studies on the mode of action of polyoxins. Vi. J Antibiot. 1974;27:260–6.

    Article  CAS  Google Scholar 

  51. Fiedler, HP. Nikkomycins and polyoxins. In: Wagman GW, Cooper R, editors. Natural Products Isolation: Separation Methods for Antimicrobials, Antivirals and Enzyme Inhibitors. Amsterdam: Elsevier; 1989. p. 153–89.

  52. Fiedler HP, Kurth R, Langhärig J, Delzer J, Zähner H. Nikkomycins: microbial inhibitors of chitin synthase. J Chem Technol Biotechnol. 1982;32:271–80.

    Article  CAS  Google Scholar 

  53. Ubukata M, Uramoto M, Isono K. The structure of neopeptins, inhibitors of fungal cell wall biosynthesis. Tetrahedron Lett. 1984;25:423–6.

    Article  CAS  Google Scholar 

  54. Ubukata M, Isono K. Application of recent NMR techniques for the study of new antibiotics. J Syn Org Chem Jpn. 1985;43:789–97.

    Article  CAS  Google Scholar 

  55. Ubukata M, Uramoto M, Uzawa J, Isono K. Structure and biological activity of neopeptins A, B and C, inhibitors of fungal cell wall glycan synthesis. Agr Biol Chem. 1986;50:357–65.

    CAS  Google Scholar 

  56. Cortés JCG, Curto M-Á, Carvalho VS, Pérez P, Ribas JC. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol Adv. 2019;37:1–23.

    Article  CAS  Google Scholar 

  57. Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000;8:402–10.

    Article  CAS  PubMed  Google Scholar 

  58. Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem. 2018;6:1–13.

    Article  CAS  Google Scholar 

  60. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast. 1998;14:1471–510.

    Article  CAS  PubMed  Google Scholar 

  61. Mongrand S, Stanislas T, Bayer EM, Lherminier J, Simon-Plas F. Membrane rafts in plant cells. Trends Plant Sci. 2010;15:656–63.

    Article  CAS  PubMed  Google Scholar 

  62. Alvarez FJ, Douglas LM, Konopka JB. Sterol-rich plasma membrane domains in fungi. Eukaryot Cell. 2007;6:755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodrigues ML. The multifunctional fungal ergosterol. MBio. 2018;9:e01755–18.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bossche HV. Importance and role of sterols in fungal membranes. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG, editors. Biochemistry of Cell Walls and Membranes in Fungi. Berlin: Springer-Verlag; 1990. p. 135–57.

  65. Köller W. Antifungal agents with target sites in sterol functions and biosynthesis. In: Köller W, editor. Target Sites of Fungicide Action. Boca Raton: CRC Press; 1992. p. 119–206.

  66. Mysyakina I, Funtikova N. The role of sterols in morphogenetic processes and dimorphism in fungi. Microbiology. 2007;76:1–13.

    Article  CAS  Google Scholar 

  67. Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat Commun. 2015;6:6129.

    Article  CAS  PubMed  Google Scholar 

  68. Theis T, Stahl U. Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci. 2004;61:437–55.

    Article  CAS  PubMed  Google Scholar 

  69. Soltani S, Keymanesh K, Sardari S. Evaluation of structural features of membrane acting antifungal peptides by artificial neural networks. J Biol Sci. 2008;8:834–45.

    Article  CAS  Google Scholar 

  70. Soltani S, Keymanesh K, Sardari S. In silico analysis of antifungal peptides: determining the lead template sequence of potent antifungal peptides. Expert Opin Drug Dis. 2007;2:837–47.

    Article  CAS  Google Scholar 

  71. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 2001;81:1475–85.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moradi S, Soltani S, Ansari AM, Sardari S. Peptidomimetics and their applications in antifungal drug design. Antiinfect Agents Med Chem. 2009;8:327–44.

    Article  CAS  Google Scholar 

  73. Ahmed TA, Hammami R. Recent insights into structure–function relationships of antimicrobial peptides. J Food Biochem. 2019;43:e12546.

    Article  PubMed  Google Scholar 

  74. Lee J, Lee DG. Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol. 2015;25:759–64.

    Article  CAS  PubMed  Google Scholar 

  75. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski L, Silva-Pereira I, Kyaw C. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lohner K, Prenner EJ. Differential scanning calorimetry and X-ray interaction of antimicrobial peptides membrane-mimetic systems. Biochim Biophys Acta. 1999;1462:141–56.

    Article  CAS  PubMed  Google Scholar 

  77. Park Y-K, Hahm K-S. Antimicrobial peptides (AMPs): peptide structure and mode of action. BMB Rep. 2005;38:507–16.

    Article  CAS  Google Scholar 

  78. Hashimoto M, Murakami T, Funahashi K, Tokunaga T, Nihei KI, Okuno T, et al. An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorg Med Chem. 2006;14:8259–70.

    Article  CAS  PubMed  Google Scholar 

  79. Mizuhara N, Kuroda M, Ogita A, Tanaka T, Usuki Y, Fujita KI. Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg Med Chem. 2011;19:5300–10.

    Article  CAS  PubMed  Google Scholar 

  80. Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol. 2004;56:285–9.

    Article  CAS  PubMed  Google Scholar 

  81. Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem. 1999;274:7286–91.

    Article  CAS  PubMed  Google Scholar 

  82. Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. PNAS. 2001;98:14637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Espinel-Ingroff A. Standardized disk diffusion method for yeasts. Clin Microbiol Newsl. 2007;29:97–100.

    Article  Google Scholar 

  84. López-Oviedo E, Aller A, Martin C, Castro C, Ramirez M, Pemán J, et al. Evaluation of disk diffusion method for determining posaconazole susceptibility of filamentous fungi: comparison with CLSI broth microdilution method. Antimicrob Agents Chemother. 2006;50:1108–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.

    Article  CAS  PubMed  Google Scholar 

  86. Rodriguez-Tudela J, Barchiesi F, Bille J, Chryssanthou E, Cuenca-Estrella M, Denning D, et al. Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clin Microbiol Infect. 2003;9:1–8.

    Article  Google Scholar 

  87. Chen X, Zheng Y, Shen Y. Bioassay method for the quantitative determination of tautomycin in the fermentation broth with Sclerotinia clerotiorum. J Rapid Methods Autom Microbiol. 2008;16:199–209.

    Article  CAS  Google Scholar 

  88. Gehrt A, Peter J, Pizzo PA, Walsh TJ. Effect of increasing inoculum sizes of pathogenic filamentous fungi on MICs of antifungal agents by broth microdilution method. J Clin Microbiol. 1995;33:1302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pfaller M, Barry A. Evaluation of a novel colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol. 1994;32:1992–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Espinel-Ingroff A, Kish C, Kerkering T, Fromtling R, Bartizal K, Galgiani J, et al. Collaborative comparison of broth macrodilution and microdilution antifungal susceptibility tests. J Clin Microbiol. 1992;30:3138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6:71–9.

    Article  PubMed  Google Scholar 

  92. Iqbal Z, Pervez MA, Ahmad S, Iftikhar Y, Yasin M, Nawaz A, et al. Determination of minimum inhibitory concentrations of fungicides against fungus Fusarium mangiferae. Pak J Bot. 2010;42:3525–32.

    Google Scholar 

  93. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. 2011;10:128–34.

    Article  CAS  PubMed  Google Scholar 

  94. Marechal E. Measuring bioactivity: KI, IC50 and EC50. In: Marechal E, Roy S, Lafanechere L, editors. Chemogenomics and Chemical Genetics. Berlin: Springer-Verlag; 2011. p. 55–65.

  95. Sugaya N. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach. J Chem Inf Model. 2013;53:2525–37.

    Article  CAS  PubMed  Google Scholar 

  96. Groll AH. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharm. 1998;44:343–500.

    Article  CAS  Google Scholar 

  97. Isono K, Nagatsu J, Kawashima Y, Suzuki S. Studies on polyoxins, antifungal antibiotics: Part I. Isolation and characterization of polyoxins A and B. Agric Biol Chem. 1965;29:848–54.

    CAS  Google Scholar 

  98. Isono K, Nagatsu J, Kobinata K, Sasaki K, Suzuki S. Studies on polyoxins, antifungal antibiotics: Part V. Isolation and characterization of polyoxins C, D, E, F, G, H and I. Agric Biol Chem. 1967;31:190–9.

    CAS  Google Scholar 

  99. Isono K, Kobinata K, Suzuki S. Isolation and characterization of polyoxins J, K and L, new components of polyoxin complex. Agric Biol Chem. 1968;32:792–3.

    Article  CAS  Google Scholar 

  100. Isono K, Asahi K, Suzuki S. Polyoxins, antifungal antibiotics. XIII. Structure of polyoxins. J Am Chem Soc. 1969;91:7490–505.

    Article  CAS  PubMed  Google Scholar 

  101. Isono K, Suzuki S. The structure of polyoxin C. Tetrahedron Lett. 1968;9:203–8.

    Article  Google Scholar 

  102. Isono K, Suzuki S. The structures of polyoxins D, E, F, G, H, I, J, K and L. Agric Biol Chem. 1968;32:1193–7.

    Article  CAS  Google Scholar 

  103. Kobinata K, Uramoto M, Nishii M, Kusakabe H, Nakamura G, Isono K. Neopolyoxins A, B, and C, new chitin synthetase inhibitors. Agric Biol Chem. 1980;44:1709–11.

    CAS  Google Scholar 

  104. Uramoto M, Kobinata K, Isono K, Higashijima T, Miyazawa T, Jenkins E, et al. Structures of neopolyoxins A, B, and C. Tetrahedron Lett. 1980;21:3395–8.

    Article  CAS  Google Scholar 

  105. Uramoto M, Kobinata K, Isono K, Jenkins E, McCloskey J, Higashijima T, et al. Neopolyoxins A, B, and C: new inhibitors of fungal cell wall chitin synthetase. Nucleic Acids Symp Ser. 1980;8:S69–S71.

  106. Dähn U, Hagenmaier H, Höhne H, König W, Wolf G, Zähner H. Stoffwechselprodukte von mikroorganismen. Arch Microbiol. 1976;107:143–60.

    Article  PubMed  Google Scholar 

  107. Zhang D, Miller M. Polyoxins and nikkomycins: progress in synthetic and biological studies. Curr Pharm Des. 1999;5:73–100.

    CAS  PubMed  Google Scholar 

  108. Decker H, Bormann C, Fiedler H-P, Zähner H, Heitsch H, König WA. Metabolic products of microorganisms. 252. Isolation of new nikkomycins from Streptomyces tendae. J Antibiot. 1989;42:230–5.

    Article  CAS  Google Scholar 

  109. Bormann C, Mattern S, Schrempf H, Fiedler H-P, Zähner H. Isolation of Streptomyces tendae mutants with an altered nikkomycin spectrum. J Antibiot. 1989;42:913–8.

    Article  CAS  Google Scholar 

  110. Endo A, Kakiki K, Misato T. Mechanism of action of the antifugal agent polyoxin D. J Bacteriol. 1970;104:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Isono K. Nucleoside antibiotics: structure, biological activity, and biosynthesis. J Antibiot. 1988;41:1711–39.

    Article  CAS  Google Scholar 

  112. Decker H, Zähner H, Heitsch H, König W, Fiedler H-P. Structure-activity relationships of the nikkomycins. Microbiology. 1991;137:1805–13.

    CAS  Google Scholar 

  113. Naider F, Shenbagamurthi P, Steinfeld A, Smith H, Boney C, Becker J. Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob Agents Chemother. 1983;24:787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hanessian S, Fu J-M. Total synthesis of polyoximic acid. Can J Chem. 2001;79:1812–26.

    Article  CAS  Google Scholar 

  115. Tsuda K, Nihara T, Nishii M, Nakamura G, Isono K, Suzuki S. A new antibiotic, lipopeptin A. J Antibiot. 1980;33:247–8.

    Article  CAS  Google Scholar 

  116. Ishiyama T, Higashi K, Ohi T, Okimoto Y. Studies on spore germination controlling substance from Streptomyces sp. No. 74-6. Tamagawa Univ Fac Agr Bull. 1987;27:64–80.

  117. Nishii M, Kihara T, Isono K, Higashijima T, Miyazawa T, Sethi SK, et al. The structure of lipopeptin A. Tetrahedron Lett. 1980;21:4627–30.

    Article  CAS  Google Scholar 

  118. Nishii M, Isono K, Izaki K. Inhibition of microbial cell wall synthesis by lipopeptin A. Agric Biol Chem. 1981;45:895–902.

    CAS  Google Scholar 

  119. Satomi T, Kusakabe H, Nakamura G, Nishio T, Uramoto M, Isono K. Neopeptins A and B, new antifungal antibiotics. Agr Biol Chem. 1982;46:2621–3.

    CAS  Google Scholar 

  120. Kim YS, Kim HM, Chang C, Hwang IC, Oh H, Ahn JS, et al. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manag Sci. 2007;63:1208–14.

    Article  CAS  PubMed  Google Scholar 

  121. Tanaka Y, Hirata K, Takahashi Y, Iwai Y, Omura S. Globopeptin, a new antifungal peptide antibiotic. J Antibiot. 1987;40:242–4.

    Article  CAS  Google Scholar 

  122. Tanaka Y. Antifungal agent. In: Omura S, editor. The Search for Bioactive Compounds from Microorganisms. New York: Springer-Verlag; 1992. p. 30–44.

  123. Shrivastava P, Kumar R. Actinobacteria: Eco-friendly candidates for control of plant diseases in a sustainable manner. In: Singh BP, Gupta VK, Passari AK, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Netherlands: Elsevier; 2018. p. 79–91.

  124. Hwang BK, Lee JY, Kim BS, Moon SS. Isolation, structure elucidation, and antifungal activity of a manumycin-type antibiotic from Streptomyces flaveus. J Agric Food Chem. 1996;44:3653–7.

    Article  CAS  Google Scholar 

  125. Takahashi K, Koshino H, Esumi Y, Tsuda E, Kurosawa K. SW-163C and E, novel antitumor depsipeptides produced by Streptomyces sp. J Antibiot. 2001;54:615–21.

    Article  Google Scholar 

  126. Kunihiro S, Kaneda M. Glomecidin, a novel antifungal cyclic tetrapeptide produced by Streptomyces lavendulae H698 SY2. J Antibiot. 2003;56:30–3.

    Article  CAS  Google Scholar 

  127. Rhee KH. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J Mol Microbiol Biotechnol. 2003;13:984–8.

    CAS  Google Scholar 

  128. Yan P-S, Song Y, Sakuno E, Nakajima H, Nakagawa H, Yabe K. Cyclo (L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol. 2004;70:7466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rhee K-H. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int J Antimicrob Agents. 2004;24:423–7.

    Article  CAS  PubMed  Google Scholar 

  130. Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, et al. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp.(MSU-2110) endophytic on Monstera sp. Microbiology. 2004;150:785–93.

    Article  CAS  PubMed  Google Scholar 

  131. Cavaletti L, Monciardini P. Congruence between strain morphology and the 16S rRNA gene sequence. Microbiology. 2004;150:3093–4.

    Article  CAS  PubMed  Google Scholar 

  132. Strobel GA, Ezra D, Castillo U, Hess WM. A question concerning the identity of Streptomyces sp MSU-2110. Microbiology. 2004;150:3094–6.

    Article  CAS  Google Scholar 

  133. Abdalla MA, Matasyoh JC. Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect. 2014;4:257–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Berglund NA, Piggot TJ, Khalid S. Interaction of the antimicrobial polymyxin B1 with the inner and outer membranes of E. coli: insights into the mechanisms of membrane disruption. Biophys J. 2014;106:97a.

    Article  Google Scholar 

  135. Broberg A, Vasiliauskas R. Kutznerides 1-4, depsipeptides from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of Picea abies seedlings. J Nat Prod. 2006;69:97–102.

    Article  CAS  PubMed  Google Scholar 

  136. Pohanka A, Menkis A, Levenfors J, Broberg A. Low-abundance kutznerides from Kutzneria sp 744. J Nat Prod. 2006;69:1776–81.

    Article  CAS  PubMed  Google Scholar 

  137. Matter AM, Hoot SB, Anderson PD, Neves SS, Cheng Y-Q. Valinomycin biosynthetic gene cluster in Streptomyces: conservation, ecology and evolution. PLoS ONE. 2009;4:e7194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lim TH OhHC, Kwon SY, Kim JH, Seo HW, Lee JH, et al. Antifungal activity of valinomycin, a cyclodepsipeptide from Streptomyces padanus TH-04. Nat Prod Sci. 2007;13:144–7.

    Google Scholar 

  139. Junge W, Schmid R. The mechanism of action of valinomycin on the thylakoid membrane. J Membr Biol. 1971;4:179–92.

    Article  CAS  PubMed  Google Scholar 

  140. Lombardi FJ, Reeves JP, Kaback HR. Mechanisms of active transport in isolated bacterial membrane vesicles XIII. Valinomycin-induced rubidium transport. J Biol Chem. 1973;248:3551–65.

    CAS  PubMed  Google Scholar 

  141. Varma S, Sabo D, Rempe SB. K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. JMBio. 2008;376:13–22.

    Article  CAS  Google Scholar 

  142. Park CN, Lee JM, Lee D, Kim BS. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. strain M10 antagonistic to Botrytis cinerea. J Microbiol Biotechnol. 2008;18:880–4.

    CAS  PubMed  Google Scholar 

  143. Aoki M, Ohtsuka T, Itezono Y, Yokose K, Furihata K, Seto H. Structure of cyclothiazomycin, a unique polythiazole-containing peptide with renin inhibitory activity. Part 1. Chemistry and partial structures of cyclothiazomycin. Tetrahedron Lett. 1991;32:217–20.

    Article  CAS  Google Scholar 

  144. Aoki MOT, Yamada M, Ohba Y, Yoshizaki H, Yasuno H, Sano T, et al. Cyclothiazomycin, a novel polythiazole-containing peptide with renin inhibitory activity. J Antibiot. 1991;44:582–8.

    Article  CAS  Google Scholar 

  145. Shemyakin M, Aldanova N, Vinogradova E, Feigina MY. The structure and total synthesis of valinomycin. Tetrahedron Lett. 1963;4:1921–5.

    Article  Google Scholar 

  146. Brockmann H, Schmidt Kastner G. Valinomycin I, XXVII. Mitteilung über Antibiotika aus Actinomyceten. Chem Ber. 1955;88:57–61.

    Article  CAS  Google Scholar 

  147. Anke T, Lipmann F. Studies on the biosynthesis of valinomycin. FEBS Lett. 1977;82:337–40.

    Article  CAS  PubMed  Google Scholar 

  148. Andreoli TE, Tieffenberg M, Tosteson DC. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Antibiot. 1967;50:2527–45.

    CAS  Google Scholar 

  149. Rose L, Jenkins A. The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry. 2007;70:387–93.

    Article  CAS  PubMed  Google Scholar 

  150. Rose MC, Henkens RW. Stability of sodium and potassium complexes of valinomycin. Biochim Biophys Acta. 1974;372:426–35.

    Article  CAS  Google Scholar 

  151. Macdonald JC, Slater GP. Biosynthesis of valinomycin. Can J Biochem. 1968;46:573–8.

    Article  CAS  PubMed  Google Scholar 

  152. Ristow H, Salnikow J, Kleinkauf H. Biosynthesis of valinomycin. FEBS Lett. 1974;42:127–30.

    Article  CAS  PubMed  Google Scholar 

  153. Gisin B, Merrifield R, Tosteson D. Solid-phase synthesis of the cyclododecadepsipeptide valinomycin. J Am Chem Soc. 1968;91:2691–5.

    Article  Google Scholar 

  154. Losse G, Klengel H. Synthese des depsipeptides valinomycin nach der festphasenmethode. Tetrahedron. 1971;27:1423–34.

    Article  CAS  Google Scholar 

  155. Ovchinnikov YA, Ivanov V. Integrated conformational studies of cyclopeptides. Tetrahedron. 1974;30:1871–90.

    Article  CAS  Google Scholar 

  156. Dory YL, Mellor JM, McAleer JF. Improved methods of synthesis of valinomycins. Tetrahedron Lett. 1989;30:1695–8.

    Article  CAS  Google Scholar 

  157. Zeggaf C, Poncet J, Jouin P, Dufour M-N, Castro B. Isopropenyl chlorocarbonate (IPCC) in amino acid and peptide chemistry: esterification of N-protected amino acids; application to the synthesis of the depsipeptide valinomycin. Tetrahedron Lett. 1989;45:5039–50.

    Article  CAS  Google Scholar 

  158. Danica Galonic F, Sinisa H, Neumann CS, Matthias S, Marahiel MA, Walsh CT. Cloning and characterization of the biosynthetic gene cluster for kutznerides. PNAS. 2007;104:16498–503.

    Article  Google Scholar 

  159. Heemstra JR Jr, Walsh CT. Tandem action of the O2-and FADH2-dependent halogenases KtzQ and KtzRn for kutzneride assembly. J Am Chem Soc. 2008;130:14024–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Neumann CS, Walsh CT. Biosynthesis of (−)-(1S,2R)-allocoronamic acyl thioester by an FeII-dependent halogenase and a cyclopropane-forming flavoprotein. J Am Chem Soc. 2008;130:14022–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wei J, Heemstra JR, Forseth RR, Neumann CS, Soraya M, Schroeder FC, et al. Biosynthetic chlorination of the piperazate residue in kutzneride biosynthesis by KthP. Biochemistry. 2011;50:6063–72.

    Article  CAS  Google Scholar 

  162. Zolova OE, Sylvie GT. KtzJ-dependent serine activation and O-methylation by KtzH for kutznerides biosynthesis. J Antibiot. 2014;67:59–64.

    Article  CAS  Google Scholar 

  163. Neumann CS, Jiang W, Heemstra JR Jr, Gontang EA, Kolter R, Walsh CT. Biosynthesis of piperazic acid via N5 -hydroxy-ornithine in Kutzneria spp. 744. Chembiochem. 2012;13:972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Matthias S, Nolan EM, Walsh CT, Marahiel MA. Stereospecific synthesis of threo- and erythro-β-hydroxyglutamic acid during kutzneride biosynthesis. J Am Chem Soc. 2009;131:13523–30.

    Article  CAS  Google Scholar 

  165. Setser JW, Heemstra JR Jr, Walsh CT, Drennan CL. Crystallographic evidence of drastic conformational changes in the active site of a flavin-dependent N-hydroxylase. Biochemistry. 2014;53:6063–77.

    Article  CAS  PubMed  Google Scholar 

  166. Goff GL, Ouazzani J. Natural hydrazine-containing compounds: biosynthesis,isolation,biological activities and synthesis. Bioorg Med Chem. 2014;22:6529–44.

    Article  PubMed  CAS  Google Scholar 

  167. McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol. 2019;46:493–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lu, Y., Chen, H. et al. Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. J Antibiot 73, 265–282 (2020). https://doi.org/10.1038/s41429-020-0287-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0287-4

This article is cited by

Search

Quick links