Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New butyrolactone derivatives from the endophytic Fungus Talaromyces sp. CPCC 400783 of Reynoutria japonica Houtt

Abstract

Six new butyrolactone derivatives (1, 2a/2b, 3a/3b and 4), together with another two known derivatives (5 and 6) were isolated from the endophytic fungus Talaromyces sp. CPCC 400783. Their structures were established by a combination of spectroscopic analysis, including NMR and HRESIMS. The absolute configurations were elucidated by ECD experiments. Subsequently, compound 1, 3b, 4 and 5 exhibited good inhibitory effect against influenza A/WSN/33 (H1N1) virus with IC50 values of 21.93 ± 1.51, 21.54 ± 3.75, 18.36 ± 2.15 and 23.80 ± 3.05 μM respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ancheeva E, Daletos G, Proksch P. Bioactive secondary metabolites from endophytic fungi. Curr Med Chem. 2020;27:1836–54.

    Article  CAS  Google Scholar 

  2. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep. 2011;28:1208–28.

    Article  CAS  Google Scholar 

  3. Nisa H, Kamilia AN, Nawchoo IA, Shafia S, Shameema N, Bandha SA. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb Pathog. 2015;82:50–59.

    Article  CAS  Google Scholar 

  4. Liu JM, Zhang DW, Zhang M, Chen RD, Yan Z, Zhao JY, et al. Periconones B-E, new meroterpenoids from endophytic fungus Periconia sp. Chinese Chem Lett. 2017;2:248–52.

    Article  Google Scholar 

  5. Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA. Polyphasic taxonomy of the genus Talaromyces. Stud Mycol. 2014;78:175–341.

    Article  CAS  Google Scholar 

  6. He JW, Liang HX, Gao H, Kuang RQ, Chen GD, Hu D, et al. Talaflavuterpenoid A, a new nardosinane-type sesquiterpene from Talaromyces flavus. J Asian Nat Prod Res. 2014;16:1029–34.

    Article  CAS  Google Scholar 

  7. He JW, Mu ZQ, Gao H, Chen GD, Zhao Q, Dan HU, et al. New polyesters from Talaromyces flavus. Tetrahedron. 2014;70:4425–30.

    Article  CAS  Google Scholar 

  8. Xie XS, Fang XW, Huang R, Zhang SP, Wei HX, Wu SH, et al. A new dimeric anthraquinone from endophytic Talaromyces sp. YE3016. Nat Prod Res. 2016;30:1706–11.

    Article  CAS  Google Scholar 

  9. Bara R, Aly AH, Pretsch A, Wray V, Wang BG, Proksch P, et al. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J Antibiot. 2013;66:491–93.

    Article  CAS  Google Scholar 

  10. Chu YS, Niu XM, Wang YL, Guo JP, Pan WZ, Huang XW, et al. Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett. 2010;12:4356–59.

    Article  CAS  Google Scholar 

  11. Guo JP, Tan JL, Wang YL, Wu HY, Zhang CP, Niu XM, et al. Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. J Nat Prod. 2011;74:2278–81.

    Article  CAS  Google Scholar 

  12. Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol. 2015;5:773–79.

    Article  Google Scholar 

  13. Liu J, Peng C, He CJ, Liu JL, He YC, Guo L, et al. New amino butenolides from the bulbs of Fritillaria unibracteata. Fitoterapia. 2014;98:53–58.

    Article  CAS  Google Scholar 

  14. Bai ZQ, Lin XP, Wang YZ, Wang JF, Zhou XF, Yang B, et al. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia. 2014;95:194–202.

    Article  CAS  Google Scholar 

  15. Liu HT, Liu SC, Guo LD, Zhang YG, Cui LJ, Ding G. New furanones from the plant endophytic fungus Pestalotiopsis besseyi. Molecules. 2012;17:14015–21.

    Article  CAS  Google Scholar 

  16. Ma XH, Zhu TJ, Gu QQ, Xi R, Wang W, Li DH. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23. J Ocean U China. 2014;13:1067–70.

    Article  CAS  Google Scholar 

  17. Wang WH, Kim HY, Patil RS, Giri AG, Wang HD, Hahn DY, et al. Cadiolides J-M, antibacterial polyphenyl butenolides from the Korean tunicate Pseudodistoma antinboja. Bioorg Med Chem Lett. 2017;27:574–7.

    Article  CAS  Google Scholar 

  18. Wang W, Kim H, Nam SJ, Rho BJ, Kang H. Antibacterial butenolides from the Korean tunicate Pseudodistoma antinboja. J Nat Prod. 2012;75:2049–54.

    Article  CAS  Google Scholar 

  19. Wang R, Liu TM, Shen MH, Yang MQ, Feng QY, Tang XM, et al. Spiculisporic acids B-D, three new γ-butenolide derivatives from a sea urchin-derived fungus Aspergillus sp. HDf2. Molecules. 2012;17:13175–82.

    Article  CAS  Google Scholar 

  20. Guo F, Li ZL, Xu XW, Wang KB, Shao ML, Feng Z, et al. Butenolide derivatives from the plant endophytic fungus Aspergillus terreus. Fitoterapia. 2016;113:44–50.

    Article  CAS  Google Scholar 

  21. An X, Pei YH, Chen SF, Li SG, Hu XL, Chen G, et al. Three New butenolides from the fungus Aspergillus sp. CBS-P-2. Molecules. 2016;21:1361–71.

    Article  Google Scholar 

  22. Zhang LH, Feng BM, Zhao YQ, Sun Y, Liu B, Liu F, et al. Polyketide butenolide, diphenyl ether, and benzophenone derivatives from the fungus Aspergillus flavipes PJ03-11. Bioorg Med Chem Lett. 2016;26:346–50.

    Article  CAS  Google Scholar 

  23. Gao Q, Wang Z, Liu ZL, Li XY, Zhang YX, Zhang ZZ, et al. A cell-based high-throughput approach to identify inhibitors of influenza A virus. Acta Pharm Sin B. 2014;4:301–06.

    Article  Google Scholar 

  24. Yang YN, Huang XY, Feng AM. New butyrolactone type lignans from Arctii Fructus and their anti-inflammatory activities. J Agric Food Chem. 2015;63:7958–66.

    Article  CAS  Google Scholar 

  25. Raffauf RF, Zennie TM, Onan KD, Quesne PW. Funebrine, a structurally novel pyrrole alkaloid, and other γ-hydroxyisoleucine-related metabolites of Quararibea funebris (llave) vischer (bombacaceae). J Org Chem. 1984;49:2714–18.

    Article  CAS  Google Scholar 

  26. Nonaka K, Chiba T, Suga T, Asami Y, Iwatsuki M, Masuma R, et al. Coculnol, a new penicillic acid produced by a coculture of Fusarium solani FKI-6853 and Talaromyces sp. FKA-65. J Antibiot. 2015;68:530–32.

    Article  CAS  Google Scholar 

  27. Qian PY, Wong YH, Zhang Y. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide. Proteomics. 2010;10:3435–46.

    Article  CAS  Google Scholar 

  28. Phainuphong P, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Saithong S, Phongpaichit S, et al. γ-Butenolide and furanone derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Phytochemistry. 2017;137:165–73.

    Article  CAS  Google Scholar 

  29. Burkardt HJ. Pandemic H1N1 2009 ('swine flu'): diagnostic and other challenges. Expert Rev Mol Diagn. 2011;11:35–40.

    Article  Google Scholar 

  30. Zhang J, Liu T, Tong XM, Li G, Yan JH, Ye X. Identification of novel virus inhibitors by influenza A virus specific reporter cell based screening. Antiviral Res. 2012;93:48–54.

    Article  CAS  Google Scholar 

  31. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459:1122–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Drug Innovation Major Project (2018ZX09711001-007-001), the National Natural Science Foundation of China (No. 81973220), CA and MS Innovation Fund for Medical Sciences (No. 2016-I2M-2-002, 2016-I2M-2-003 and 2020-I2M-2-010), the National Microbial Resource Center (No. NMRC-2020-3) and Practical training plan for cross training of high level talents in Beijing Universities (No. 2018-160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., He, W., Wang, Y. et al. New butyrolactone derivatives from the endophytic Fungus Talaromyces sp. CPCC 400783 of Reynoutria japonica Houtt. J Antibiot 74, 225–232 (2021). https://doi.org/10.1038/s41429-020-00388-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-00388-w

Search

Quick links