Abstract
A polyphasic approach was used to describe strain K13G38T, a novel actinomycete isolated from peat swamp forest soil collected from Surat Thani Province, Thailand. The 16S rRNA gene phylogenetic analysis indicated that the strain belonged to the genus Amycolatopsis and showed the highest sequence similarities to both Amycolatopsis acidiphila JCM 30562T and Amycolatopsis bartoniae DSM 45807T (96.8% sequence similarity). Furthermore, strain K13G38T, which formed extensively branched substrate and aerial mycelia, exhibited chemotaxonomical characteristics of the genus Amycolatopsis which included phospholipid pattern type II and cell-wall chemotype IV. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol, two unidentified phospholipids, and an unidentified aminolipid. MK-9(H4) was a predominant menaquinone of the organism. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, and C16:0. The genomic DNA size of strain K13G38T was 8.5 Mbp with 69.5 mol% G+C content. On the basis of phenotypic characteristics, overall genomic relatedness index and phylogenetic distinctiveness, strain K13G38T represents a novel species of the genus Amycolatopsis, for which the name A. acididurans sp. nov. is proposed. The type strain is K13G38T (=TBRC 12507T = NBRC 114553T).
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Salam N, Jiao J-Y, Zhang X-T, Li W-J. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol. 2020;70:1331–55.
Ningsih F, et al. Gandjariella thermophila gen. nov., sp. nov., a new member of the family Pseudonocardiaceae, isolated from forest soil in a geothermal area. Int J Syst Evol Microbiol. 2019;69:3080–6.
Nouioui I, et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol. 2018;9:2007.
Parte AC. LPSN—list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol. 2018;68:1825–9.
Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019;47:W276–82.
Teo WFA, Srisuk N, Duangmal K. Amycolatopsis acidicola sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol. 2020;70:1547–54.
Niu M-M, et al. Amycolatopsis nivea sp. nov., isolated from a Yellow River sample. Int J Syst Evol Microbiol. 2020;70:3084–90.
Narsing Rao MP, et al. Amycolatopsis alkalitolerans sp. nov., isolated from Gastrodia elata Blume. J Antibiot. 2020;73:35–39.
Mingma R, Inahashi Y, Matsumoto A, Takahashi Y, Duangmal K. Amycolatopsis pithecelloba sp. nov., a novel actinomycete isolated from roots of Pithecellobium dulce in Thailand. J Antibiot. 2020;73:230–5.
Wang H-F, et al. Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior. Int J Syst Evol Microbiol. 2020;70:3391–8.
Sangal V, et al. Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol. 2018;9:2281.
Adamek M, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics. 2018;19:426.
Waksman SA. The Actinomycetes: their nature, occurrence, activities, and importance. Waltham, Massachusetts: Chronica Botanica Company; 1950.
Donadio S, Cavaletti L, Monciardini P. Genus I Actinospica Cavaletti, Monciardini, Schumann, Rohde, Bamonte, Busti, Sosio and Donadio 2006, 1751VP. In: Goodfellow M, et al., editors. Bergey’s Manual of Systematic Bacteriology. 2nd. New York: Springer; 2012. p. 232–4.
Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.
Tan GYA, Ward AC, Goodfellow M. Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol. 2006;29:557–69.
Williams ST, Davies FL, Mayfield CI, Khan MR. Studies on the ecology of actinomycetes in soil—II: The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem. 1971;3:187–95.
Flowers TH, Williams ST. Nutritional requirements of acidophilic streptomycetes. Soil Biol Biochem. 1977;9:225–6.
Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol. 1965;13:236–43.
Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.
Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–31.
Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol. 1982;151:828–37.
Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Evol Microbiol. 1977;27:104–17.
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics. Norwich: John Innes Foundation; 2000.
Bankevich A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.
Tatusova T, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.
Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder—distinguishing friend from foe using bacterial whole genome sequence data. PLoS ONE. 2013;8:e77302.
Blin K, et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.
Chun J, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.
Yoon S-H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.
Tarlachkov SV, Starodumova IP. TaxonDC: calculating the similarity value of the 16S rRNA gene sequences of prokaryotes or ITS regions of fungi. J Bioinf Genom. 2017;3:1–4.
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:1–14.
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2017;33:1870–4.
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol. 1977;5:249–60.
Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol. 1970;20:435–43.
Seyedsayamdost MR, Traxler MF, Zheng S-L, Kolter R, Clardy J. Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4. J Am Chem Soc. 2011;133:11434–7.
Kodani S, Komaki H, Suzuki M, Hemmi H, Ohnishi-Kameyama M. Isolation and structure determination of new siderophore albachelin from Amycolatopsis alba. BioMetals. 2015;28:381–9.
Acknowledgements
This research was supported by Center of Excellence on Biodiversity (BDC), Office of Higher Education Commission (Project Code BDC-PG1-160003) and supported in part by the Graduate Program Scholarship from The Graduate School, Kasetsart University to Teo Wee Fei Aaron. The authors are grateful to Professor Dr. Savitree Limtong of Kasetsart University, the director of the research program. This work was partially supported by UGSAS-GU via the “Microbiology Laboratory Station for IC - GU12” at Kasetsart University.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Teo, W.F.A., Lipun, K., Srisuk, N. et al. Amycolatopsis acididurans sp. nov., isolated from peat swamp forest soil in Thailand. J Antibiot 74, 199–205 (2021). https://doi.org/10.1038/s41429-020-00382-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41429-020-00382-2