Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of water-soluble prodrugs of 5-modified 2ʹ-deoxyuridines and their antibacterial activity

Abstract

Recently we have synthesized a set of pyrimidine nucleoside derivatives bearing extended alkyltriazolylmethyl substituents at position 5 of the nucleic base, and showed their significant activity against Mycobacterium tuberculosis virulent laboratory strain H37Rv as well as drug-resistant MS-115 strain. The presence of a lengthy hydrophobic substituent leads to the reduction of nucleoside water solubility making their antibacterial activity troublesome to study. A series of water-soluble forms of 5-modified 2ʹ-deoxyuridines 4a–c and 8a–c were synthesized. They appeared at least two orders more soluble compared with the parent compounds 1a and 1b. Their half-hydrolysis time was 5–12 h, which can be considered optimal for prodrugs used in clinics. Obtained compounds showed moderate activity (MIC 48–95 µg·ml−1) against some Gram-positive bacteria including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis and were low cytotoxic for human cell lines (CD50 >> 100 µg·ml−1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336–43.

    Article  CAS  Google Scholar 

  2. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29:695–747.

    Article  Google Scholar 

  3. Jordheim JP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12:448–64.

    Article  Google Scholar 

  4. Matsuda A, Sasaki T. Antitumor activity of sugar-modified cytosine nucleosides. Cancer Sci. 2004;95:105–11.

    Article  CAS  Google Scholar 

  5. Yssel AEJ, Vanderleyden J, Steenackers HP. Repurposing of nucleoside- and nucleobase-derivative drugs as antibiotics and biofilm inhibitors. J Antimicrob Chemother. 2017;72:2156–70.

    Article  CAS  Google Scholar 

  6. Bugg TDH, Kerr RV. Mechanism of action of nucleoside antibacterial natural product antibiotics. J Antibiot. 2019;72:865–76.

    Article  CAS  Google Scholar 

  7. Thomson JM, Lamont IL. Nucleoside analogues as antibacterial agents. Front Microbiol. 2019;10:952.

    Article  Google Scholar 

  8. Ferrari V, Serpi M. Nucleoside analogs and tuberculosis: new weapons against an old enemy. Future Med Chem. 2015;7:291–314.

    Article  CAS  Google Scholar 

  9. Serpi M, Ferrari V, Pertusati F. Nucleoside derived antibiotics to fight microbial drug resistance: new utilities for an established class of drugs? J Med Chem. 2016;59:10343–82.

    Article  CAS  Google Scholar 

  10. Shakya N, Garg G, Agrawal B, Kumar R. Chemotherapeutic interventions against tuberculosis. Pharmaceuticals. 2012;56:690–718.

    Article  Google Scholar 

  11. Negrya SD, Efremenkova OV, Solyev PN, Chekhov VO, Ivanov MA, Sumarukova IG, Karpenko IL, Kochetkov SN, Alexandrova LA. Novel 5-substituted derivatives of 2ʹ-deoxy-6-azauridine with antibacterial activity. J Antibiot. 2019;72:535–44.

    Article  CAS  Google Scholar 

  12. Shmalenyuk ER, Kochetkov SN, Alexandrova LA. Novel inhibitors of mycobacterium tuberculosis growth based on modified pyrimidine nucleosides and their analogues. Russ Chem Rev. 2013;82:896–915.

    Article  Google Scholar 

  13. Van Calenbergh S, Pochet S, Munier-Lehmann H. Drug design and identification of potent leads against mycobacterium tuberculosis thymidine monophosphate kinase. Curr Top Med Chem. 2012;12:694–705.

    Article  Google Scholar 

  14. Kögler M, Vanderhoydonck B, De Jonghe S, Rozenski J, Van Belle K, Herman J, Louat T, Parchina A, Sibley C, Lescrinier E, Herdewijn P. Synthesis and evaluation of 5-substituted 2ʹ-deoxyuridine monophosphate analogues as inhibitors of flavindependent thymidylate synthase in mycobacterium tuberculosis. J Med Chem. 2011;54:4847–62.

    Article  Google Scholar 

  15. Kögler M, Busson R, De Jonghe S, Rozenski J, Van Belle K, Louat T, Munier-Lehmann H, Herdewijn P. Synthesis and evaluation of 6-aza-2ʹ-deoxyuridine monophosphate analogs as inhibitors of thymidylate synthases, and as substrates or inhibitors of thymidine monophosphate kinase in mycobacterium tuberculosis. Chem Biodivers. 2012;9:536–56.

    Article  Google Scholar 

  16. Parchina A, Froeyen M, Margamuljana L, Rozenski J, De Jonghe S, Briers Y, Lavigne R, Herdewijn P, Lescrinier E. Discovery of an acyclic nucleoside phosphonate that inhibits mycobacterium tuberculosis ThyX based on the binding mode of a 5-alkynyl substrate analogue. ChemMedChem. 2013;8:1373–83.

    Article  CAS  Google Scholar 

  17. Alexandrova LA, Chekhov VO, Shmalenyuk ER, Kochetkov SN, Abu El-Asrar R, Herdewijn P. Synthesis and evaluation of C-5 modified 2ʹ-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthases. Bioorg Med Chem. 2015;23:7131–37.

    Article  CAS  Google Scholar 

  18. Khandazhinskaya AL, Alexandrova LA, Matyugina ES, Solyev PN, Efremenkova OV, Buckheit KW, Wilkinson M, Buckheit RW,Jr, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN, Seley-Radtke KL. Novel 5ʹ-norcarbocyclic pyrimidine derivatives as antibacterial agents. Molecules. 2018;23:3069–84.

    Article  Google Scholar 

  19. Khandazhinskaya AL, Matyugina EC, Alexandrova LA, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN. Analogues of 5-substituted pyrimidine nucleosides as antibacterial agents. Biochimie. 2019. (In press).

  20. Lorian V. Aminoglycosides and peptide antibiotics. In: Amsterdam D, editor. Antibiotics in laboratory medicine. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 196–98.

  21. Shmalenyuk ER, Chernousova LN, Karpenko IL, Kochetkov SN, Smirnova TG, Andreevskaya SN, Chizhov AO, Efremenkova OV, Alexandrova LA. Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorg Med Chem. 2013;21:4874–84.

    Article  CAS  Google Scholar 

  22. Alexandrova LA, Shmalenyuk ER, Kochetkov SN, Erokhin VV, Smirnova TG, Andreevskaia SN, Chernousova LN. New 5-modified pyrimidine nucleoside inhibitors of mycobacterial growth. Acta Nat. 2010;2:84–9.

    Google Scholar 

  23. Huttunen KM, Raunio H, Rautio J. Prodrugs—from serendipity to rational design. Pharm Rev. 2011;63:750–71.

    Article  CAS  Google Scholar 

  24. Srinivas NR. The rationality for using prodrug approach in drug discovery programs for new xenobiotics: opportunities and challenges. Eur J Drug Metab Pharmacokinet. 2011;36:49–59.

    Article  CAS  Google Scholar 

  25. Jornada DH, dos Santos Fernandes GF, Chiba DE, de Melo TR, dos Santos JL, Chung MC. The prodrug approach: a successful tool for improving drug solubility. Molecules. 2015;21:42.

    Article  Google Scholar 

  26. Abu-Jaish A, Jumaa S, Karaman R. Prodrugs overview. In: Karaman R, editor. Prodrugs design: a new era. 1st ed. Hauppauge: Nova Science Publishers Inc; 2014. p. 77–102.

  27. Pochet S, Kansal V, Destouesse F, Sarfati SR. Alkylglycoside carbonates of 3′-azido-3′-deoxythymidine. Tetrahedron Lett. 1990;31:6021–24.

    Article  CAS  Google Scholar 

  28. Lee BY, Park SR, Jeon HB, Kim RS. A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Lett. 2006;47:5105–09.

    Article  CAS  Google Scholar 

  29. Levina AS, Tabatadse DR, Khalimskaya LM, Prichodko TA, Shishkin GV, Alexandrova LA, Zarytova VP. Oligonucleotide derivatives bearing reactive and stabilizing groups attached to C5 of deoxyuridine. Bioconjugate Chem. 1993;4:319–25.

    Article  CAS  Google Scholar 

  30. Zarytova VF, Komarova NI, Levina AS, Lokhov SG, Tabatadze DR, Khalimskaya LM, Alexandrova LA. Synthesis of oligonucleotides containing C-5 modified deoxyuridine with an aliphatic amino group. Russ J Bioorg Chem. 1991;17:1059–65.

    CAS  Google Scholar 

  31. Alexandrova LA, Skoblov AY, Jasko MV, Victorova LS, Krayevsky AA. 2`-Deoxynucleoside 5`-triphosphates modified at α-, β- and γ-phosphates as substrates for DNA polymerases. NAR. 1998;26:778–86.

    Article  CAS  Google Scholar 

  32. Khandazhinskaya AL, Shirokova EA, Karpenko IL, Zakirova NF, Tarussova NB, Krayevsky AA. P-(alkyl)-nucleoside 5ʹ-hydrogenphosphonates as depot forms of antiviral nucleotide analogues. Nucleosides Nucleotides Nucleic Acids. 2000;19:1795–804.

    Article  CAS  Google Scholar 

  33. De Clercq E. Antiviral drugs: current state of the art. J Clin Vir. 2001;22:73–89.

    Article  Google Scholar 

  34. Aleksandrova LA, Efremenkova OV, Andronova VL, Galegov GA, Sol’ev PN, Karpenko IL, Kochetkov SN. 5-(4-alkyl-1,2,3-triazol-1-yl)methyl derivatives of 2ʹ-deoxyuridine as inhibitors of viral and bacterial growth. Russ J Bioorg Chem. 2016;42:677–84.

    Article  Google Scholar 

  35. Niks M, Otto MJ. Towards an optimized MTT assay. Immunol Methods. 1990;130:149–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The synthesis and the cytotoxicity studies were supported by the Russian Foundation for Basic Research (RFBR, projects 17-04-00536, 17-00-00395, 17-00-00393 and 18-29-08010). The physicochemical analysis of all compounds was supported the Program of fundamental research for state academies for 2013–2020 years (No. 01201363818). The authors are grateful to Dr R.A. Novikov (Engelhardt Institute of Molecular Biology RAS) for NMR investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila A. Alexandrova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrya, S.D., Jasko, M.V., Solyev, P.N. et al. Synthesis of water-soluble prodrugs of 5-modified 2ʹ-deoxyuridines and their antibacterial activity. J Antibiot 73, 236–246 (2020). https://doi.org/10.1038/s41429-019-0273-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-019-0273-x

This article is cited by

Search

Quick links