Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amycolatopsis pithecelloba sp. nov., a novel actinomycete isolated from roots of Pithecellobium dulce in Thailand


An actinomycete strain RM579T isolated from roots of Pithecellobium dulce in Thailand was studied using the polyphasic taxonomic approach. The results of comparative 16S rRNA gene sequence and phylogenetic analysis showed that strain RM579T belonged to the family Pseudonocardiaceae and it was most closely related to members of the genera Amycolatopsis (≤94.5% sequence similarity) and Haloechinothrix (≤93.4% sequence similarity). A phylogenetic tree constructed by neighbor-joining method indicated that strain RM579T was positioned within the clade of the genus Amycolatopsis and formed a monophyletic cluster with Amycolatopsis taiwanensis 0345M-7T, Amycolatopsis pigmentata TT00-43T and Amycolatopsis helveola TT99-32T. Strain RM579T formed white aerial mycelium and yellowish-brown substrate mycelium that fragments into rod-shaped elements. Morphological features and chemotaxonomic characteristics of strain RM579T were consistent with those of the genus Amycolatopsis. The cell wall of strain RM579T contained meso-diaminopimelic acid. Arabinose, galactose, mannose, and ribose were detected as whole-cell sugars. Mycolic acids were absent. The acyl type of the muramic acid in the cell wall was N-acetyl. Diphosphatidylglycerol, hydroxyl-phosphatidylethanolamine, phosphatidylinositol, and an unidentified phospholipid were detected as polar lipids. The major cellular fatty acids (>10%) were iso-C16:0, iso-C16:0 2-OH, and C16:1 cis9. The resultant data indicated that strain RM579T should be classified as representative of a novel species in the genus Amycolatopsis, for which the name Amycolatopsis pithecelloba sp. nov. is proposed. The type strain is RM579T (=TBRC 1849T =NBRC 106096T).

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2


  1. 1.

    Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Evol Microbiol. 1986;36:29–37.

    Google Scholar 

  2. 2.

    Embley MT, Smida J, Stackebrandt E. The phylogeny of mycolate-less wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol. 1988;11:44–52.

    CAS  Article  Google Scholar 

  3. 3.

    Warwick S, Bowen T, McVeigh H, Embley TM. A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol. 1994;44:293–9.

    CAS  Article  Google Scholar 

  4. 4.

    Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43.

    CAS  Article  Google Scholar 

  5. 5.

    Lechevalier MP. Identification of aerobic actinomycetes of clinical importance. J Lab Clin Med. 1968;71:934–44.

    CAS  PubMed  Google Scholar 

  6. 6.

    Lechevalier MP, De Bievre C, Lechevalier HA. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol. 1977;5:249–60.

    CAS  Article  Google Scholar 

  7. 7.

    Xu X, Han L, Zhao L, Chen X, Miao C, Hu L, et al. Echinosporin antibiotics isolated from Amycolatopsis strain and their antifungal activity against root-rot pathogens of the Panax notoginseng. Folia Microbiol. 2019;64:171–5.

    CAS  Article  Google Scholar 

  8. 8.

    Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, et al. Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics. 2014;15:363.

    Article  Google Scholar 

  9. 9.

    Nigam A, Almabruk KH, Saxena A, Yang J, Mukherjee U, Kaur H, et al. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis. J Biol Chem. 2014;289:21142–52.

    CAS  Article  Google Scholar 

  10. 10.

    Mingma R, Duangmal K, Trakulnaleamsai S, Thamchaipenet A, Matsumoto A, Takahashi Y. Sphaerisporangium rufum sp. nov., an endophytic actinomycete from roots of Oryza sativa L. Int J Syst Evol Microbiol. 2014;64:1077–82.

    CAS  Article  Google Scholar 

  11. 11.

    Küster E, Williams ST. Selection of media for isolation of streptomycetes. Nature. 1964;202:928–9.

    Article  Google Scholar 

  12. 12.

    Tseng M, Yang SF, Li WJ, Jiang CL. Amycolatopsis taiwanensis sp. nov., from soil. Int J Syst Evol Microbiol. 2006;56:1811–5.

    CAS  Article  Google Scholar 

  13. 13.

    Tamura T, Ishida Y, Otoguro M, Suzuki K. Amycolatopsis helveola sp. nov. and Amycolatopsis pigmentata sp. nov., isolated from soil. Int J Syst Evol Microbiol. 2010;60:2629–33.

    CAS  Article  Google Scholar 

  14. 14.

    Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article  Google Scholar 

  15. 15.

    Jacobson E, Grauville WC, Fogs CE. Color harmony manual, 4th ed. Chicago: Container Corporation of America; 1958.

  16. 16.

    Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol. 1974;24:54–63.

    Article  Google Scholar 

  17. 17.

    Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol. 1957;73:15–27.

    CAS  Article  Google Scholar 

  18. 18.

    Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    CAS  Article  Google Scholar 

  19. 19.

    Uchida K, Aida K. Acyl type of bacterial cell wall: its simple identification by a colorimetric method. J Gen Appl Microbiol. 1977;23:249–60.

    CAS  Article  Google Scholar 

  20. 20.

    Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–31.

    CAS  Article  Google Scholar 

  21. 21.

    Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol. 1977;27:104–17.

    CAS  Article  Google Scholar 

  22. 22.

    Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–30.

    CAS  Article  Google Scholar 

  23. 23.

    Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol. 1982;151:828–37.

    CAS  Article  Google Scholar 

  24. 24.

    Take A, Matsumoto A, Omura S, Takahashi Y. Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov., producing lactacystin and cyslabdan, respectively. J Antibiot. 2015;68:322–7.

    CAS  Article  Google Scholar 

  25. 25.

    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    CAS  Article  Google Scholar 

  26. 26.

    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    CAS  Article  Google Scholar 

  27. 27.

    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  Google Scholar 

  28. 28.

    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    CAS  Article  Google Scholar 

  29. 29.

    Fitch WM. Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool. 1971;20:406–16.

    Article  Google Scholar 

  30. 30.

    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article  Google Scholar 

  31. 31.

    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

    CAS  Article  Google Scholar 

  32. 32.

    Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol. 2014;30:271–80.

    CAS  Article  Google Scholar 

  33. 33.

    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    CAS  Article  Google Scholar 

  34. 34.

    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–4.

    Article  Google Scholar 

Download references


This research was supported by Kasetsart University Research and Development Institute (KURDI, Project Code 2559:25.60); Kitasato Institute for Life Sciences, Kitasato University, Japan; Faculty of Science, Kasetsart University, Thailand.

Author information



Corresponding author

Correspondence to Kannika Duangmal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mingma, R., Inahashi, Y., Matsumoto, A. et al. Amycolatopsis pithecelloba sp. nov., a novel actinomycete isolated from roots of Pithecellobium dulce in Thailand. J Antibiot 73, 230–235 (2020).

Download citation

Further reading


Quick links