Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Effect of efflux pump inhibitors on the susceptibility of Mycobacterium avium complex to clarithromycin


In this study we aimed to evaluate the effect of the combination of clarithromycin and four inhibitors of efflux pumps (EPIs), including berberine (BER), carbonyl cyanide m-chlorophenylhydrazone (CCCP), piperine (PIP) and tetrandrine (TET), against 12 Mycobacterium avium complex clinical isolates. The minimum inhibitory concentration (MIC) of clarithromycin showed at least a fourfold reduction in presence of BER (83% of total isolates), CCCP (67%), PIP (25%) and TET (75%). Our results showed that the EPIs tested are active against both clarithromycin susceptible and resistant isolates. In particular, among the six resistant isolates, TET reversed the resistance phenotype of three strains, BER of two strains, and CCCP and PIP of one strain. Overall, our findings show the importance of these compounds in increasing the efficacy of clarithromycin in MAC clinical isolates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1


  1. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36:13–34.

    Article  Google Scholar 

  2. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.

    Article  CAS  Google Scholar 

  3. van Ingen J, Turenne CY, Tortoli E, Wallace RJ Jr, Brown-Elliott BA. A definition of the Mycobacterium avium complex for taxonomical and clinical purposes, a review. Int J Syst Evol Microbiol. 2018;68:3666–77.

    Article  Google Scholar 

  4. Han XY1, Tarrand JJ, Infante R, Jacobson KL, Truong M. Clinical significance and epidemiologic analyses of Mycobacterium avium and Mycobacterium intracellulare among patients without AIDS. J Clin Microbiol. 2005;43:4407–12.

    Article  Google Scholar 

  5. Griffith DE, Aksamit TR. Therapy of refractory nontuberculous mycobacterial lung disease. Curr Opin Infect Dis. 2012;25:218–27.

    Article  CAS  Google Scholar 

  6. Doucet-Populaire F, Buriankova K, Weiser J, Pernodet JL. Natural and acquired macrolide resistance in mycobacteria. Curr Drug Targets Infect Disord. 2002;2:355–70.

    Article  CAS  Google Scholar 

  7. Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol. 2017;8:681.

    Article  Google Scholar 

  8. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R, et al. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother. 2012;56:4806–15.

    Article  Google Scholar 

  9. Song LL, Wu XQ. Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents. 2016;47:421–29.

    Article  CAS  Google Scholar 

  10. Cannalire R, Machado D, Felicetti T, Santos Costa S, Massari S, Manfroni G, et al. Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. Eur J Med Chem. 2017;140:321–30.

    Article  CAS  Google Scholar 

  11. Deshpande D, Srivastava S, Musuka S, Gumbo T. Thioridazine as chemotherapy for Mycobacterium avium complex diseases. Antimicrob Agents Chemother. 2016;60:4652–8.

    Article  CAS  Google Scholar 

  12. Rodrigues L, Sampaio D, Couto I, Machado D, Kern WV, Amaral L, et al. The role of efflux pumps in macrolide resistance in Mycobacterium avium complex. Int J Antimicrob Agents. 2009;34:529–33.

    Article  CAS  Google Scholar 

  13. Shin SJ, Lee BS, Koh WJ, Manning EJ, Anklam K, Sreevatsan S, et al. Efficient differentiation of Mycobacterium avium complex species and subspecies by use of five-target multiplex PCR. J Clin Microbiol. 2010;48:4057–62.

    Article  CAS  Google Scholar 

  14. Palomino J-C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46:2720–2.

    Article  CAS  Google Scholar 

  15. Jamal MA, Maeda S, Nakata N, Kai M, Fukuchi K, Kashiwabara Y. Molecular basis of clarithromycin-resistance in Mycobacterium avium-intracellulare complex. Tube Lung Dis. 2000;80:1–4.

    Article  CAS  Google Scholar 

  16. Clinical and Laboratory Standards Institute. Susceptibility testing for Mycobacteria, Nocardiae, and other aerobic Actinomycetes: approved standard M24-A. Clinical and Laboratory standards Institute, Wayne, PA. 2011.

  17. Zhou XY, Ye XG, He LT, Zhang SR, Wang RL, Zhou J, et al. In vitro characterization and inhibition of the interaction between ciprofloxacin and berberine against multidrug-resistant Klebsiella pneumoniae. J Antibiot. 2016;69:741–6.

    Article  CAS  Google Scholar 

  18. Morita Y, Nakashima K, Nishino K, Kotani K, Tomida J, Inoue M, et al. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa. Front Microbiol. 2016;7:1223.

    Article  Google Scholar 

  19. Hegeto LA, Caleffi-Ferracioli KR, Nakamura-Vasconcelos SS, Almeida AL, Baldin VP, Nakamura CV, et al. In vitro combinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis. 2018;111:35–40.

    Article  CAS  Google Scholar 

  20. Zhang Z, Yan J, Xu K, Ji Z, Li L. Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. BMC Infect Dis. 2015;15:153.

    Article  Google Scholar 

Download references


This work was financially supported by the University of Pisa, grant “Fondi di Ateneo, 2018”.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Laura Rindi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menichini, M., Lari, N. & Rindi, L. Effect of efflux pump inhibitors on the susceptibility of Mycobacterium avium complex to clarithromycin. J Antibiot 73, 128–132 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links