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Abstract
The emergence of multiple antibiotic-resistant bacteria is a serious global problem which requires the development of new
effective antimicrobial therapeutics. Albicidin produced by the sugarcane pathogen Xanthomonas albilineans is a potent
DNA gyrase inhibitor with inhibitory effects significantly better than most DNA gyrase inhibitors. Albicidin acts primarily
by inhibiting the religation of the cleaved DNA intermediate during the gyrase catalytic sequence similar to quinolones. The
clinical realization of albicidin has been hampered by limited production and its unsolved structure. In this review, the
relationship between albicidin and sugarcane leaf-scald disease is described. Furthermore, the biosynthesis and resistance
mechanisms of albicidin are discussed. Finally, recent efforts to solve the structure and produce albicidin in a heterologous
host and chemically are summarized.

Introduction

Serious infections caused by antibiotic-resistant bacteria
have become a major global problem, indicating the need
for further innovation in antimicrobial research and devel-
opment to provide the next generation of antimicrobial
drugs. The biosynthesis of secondary metabolites requires
multi-step enzymatic pathways starting with intermediates
of primary metabolites as precursors [1]. Genes involved in
the biosynthesis of antibiotics and other secondary meta-
bolites have been cloned and characterized from a wide
variety of organisms in recent decades, revealing some of
their complex genetic organization and biosynthetic
mechanisms [1–3].

Toxins produced by phytopathogenic bacteria increase
the severity of disease in plants. Several of the phytotoxins
from pseudomonads also possess antibacterial activity
[4, 5]. In many cases, the structure of toxins, the nature of
intermediates in their biosynthesis and their mode of action
in plant diseases are known.

Albicidin phytotoxins produced by Xanthomonas albili-
neans are key pathogenicity factors in the development of leaf
scald, one of the most devastating diseases of sugarcane
(Saccharum interspecific hybrids) [6–9]. Furthermore, albi-
cidin inhibits the in vitro supercoiling activity of Escherichia
coli DNA gyrase, with IC50 (40–50 nM) below most cou-
marins and quinolones by blocking the religation of the
cleaved DNA intermediate during the gyrase catalytic
sequence and inhibits the relaxation of supercoiled DNA by
gyrase and topoisomerase IV [10]. Recently, a gene cluster
spanning more than 50 kb in the genome of X. albilineans
associated with albicidin production has been cloned [11–15].
Most importantly the chemical structure for albicidin has
been solved and de nova synthesis has been achieved.

In this review, the relationship between albicidin and
sugarcane leaf-scald disease will first be described. Struc-
ture and biosynthesis of albicidin will be discussed.
Mechanisms of albicidin action and resistance will then be
summarized.

Albicidin and sugarcane leaf-scald disease

Sugarcane leaf-scald disease

Leaf-scald disease is a major disease of sugarcane (Sac-
charum spp. hybrids), with the potential to cause severe
losses of cane yield and quality in susceptible cultivars. It is
a vascular disease caused by the gram-negative bacterium
X. albilineans [9, 16]. Leaf-scald disease has been reported
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in more than 50 countries [16] and continues to spread into
new areas [17–19]. Symptoms including the emergence of
chlorotic leaves, wilting, necrosis and sometimes rapid
death of plants, often appear after a prolonged latent period
[20]. In its latent period, the pathogen can remain dormant
until environmental conditions are favorable for symptom
expression. However, when the disease enters its acute
phase, entire blocks of apparently healthy cane can die off
and become completely unharvestable over a period of only
a few weeks. The pathogen is mechanically transmitted
during harvesting, and can also spread naturally, for
example by wind-blown exudates under cyclonic conditions
[16]. X. albilineans infects several grasses other than
sugarcane. Control of the disease is based on the use of
resistant varieties as this reservoir of the pathogen in weed
grasses makes eradication virtually impossible [16].

Electronic microscopic examination of the structure of
infected leaves revealed that the pathogen is confined to the
xylem vessels or adjacent intercellular spaces during the
early stages of disease development [21]. Mature chlor-
oplasts were absent from white leaf tissue and the plastids in
these tissues were proplastids, etioplasts, and vesicular
forms smaller than chloroplasts [21]. Birch and Patil [7]
suggest that the characteristic white pencil lines and
chlorosis of emerging leaves are due to the production by X.
albilineans of a diffusible phytotoxin which selectively
blocks chloroplast differentiation.

Albicidin antibiotics and phytotoxins

Chlorosis inducing isolates of X. albilineans produce a
family of potent antibiotics in culture. The major anti-
microbial component, called albicidin, is a low molecular
weight compound with several aromatic rings [7]. The
compound is soluble in polar organic solvents and partially
soluble in water. Albicidin is rapidly bactericidal at nano-
molar concentrations against a wide range of gram-positive
and gram-negative bacteria (Table 1), but it shows no
cytotoxicity to cultured mammalian cells at 8 µg ml−1 [22].
Albicidins are therefore of great interest as potential clinical
antibacterial drugs. This clinical interest is further heigh-
tened by the recent discovery that malaria and toxoplasma
parasites contain vestigial plastids that are essential for their
survival [21].

Albicidin-deficient (Tox−) mutants of X. albilineans fail
to cause chlorosis or any other symptoms of leaf-scald
disease in inoculated sugarcane [6, 8]. Transgenic sugar-
canes that express the albicidin detoxification enzyme
(AlbD) block systemic disease [9, 23]. These results indi-
cate that albicidin phytotoxins are responsible for the
characteristic chlorotic symptoms in X. albilineans infected
sugarcane and that they play an overall role in systemic
disease development by weakening host defenses [23].

Effect of albicidin on chloroplasts

It was postulated that albicidin might cause the blocked
chloroplast differentiation, in diseased plants, as chlor-
oplasts exhibit prokaryotic-like mechanisms of DNA
replication [6]. Furthermore, it has been shown that plant
chloroplasts have functional DNA gyrase that shows sen-
sitivity to quinolones and as such, this is the most likely
target of albicidin [24, 25]. Albicidin mutants and revertants
showed a correlation between albicidin production and
ability to cause disease [6]. An albicidin resistant bacterial
strain of Pantoea dispersa (SB1403), showed a strong
capacity for enzymatic detoxification of albicidin [26].
Susceptible sugarcane plants co-inoculated with P. dispersa
showed a 98% reduction in the frequency of white pencil
lines, even with a tenfold excess of X. albilineans inoculum.
Also, the pathogen could not be reisolated and mutants of P.
dispersa that failed to produce the detoxification enzyme
were less effective in biocontrol [20, 26].

Albicidin is a potent inhibitor of DNA gyrase

Early studies suggested that albicidins block DNA replica-
tion in bacteria and sugarcane proplastids and inhibit
replication of bacteriophage T4 and T7 [6, 7, 22]. The
primary mode of action was shown to be a rapid and
complete block of DNA synthesis. Albicidin also resulted in
partial inhibition of RNA and protein synthesis, but this
probably reflects decreasing cell viability [22]. Furthermore,
albicidin did not appear to bind directly to DNA, as no
change in the absorption spectra is observed on mixing
albicidin with E. coli DNA [22]. The kinetics of DNA
replication inhibition by albicidin closely resemble the
effects of inhibition of DNA gyrase by the coumarin and
quinolone antibiotics [22, 27, 28]. This selective inhibition
of DNA synthesis without binding suggested a specific
interaction of albicidin with an essential DNA replication
protein [22].

Table 1 Activity of albicidin against gram-positive and gram-negative
bacteria

Organism Albicidin MIC/IC50 References

E. coli 0.031 µg ml−1 [63]

E. coli DNA gyrase 50 nM [10]

S. enteritidis 0.5 µg ml−1 [63]

P. aeruginosa 1 µg ml−1 [63]

S. aureus 16 µg ml−1 [63]

M. luteus 1 µg ml−1 [63]

B. subtilis DSM10 297 nM [64]

S. typhimurium TA100 37 nM [64]
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Recent work by Hashimi et al. [10] showed that albicidin
is a potent inhibitor of DNA Gyrase with minimum inhi-
bitory concentrations less than most quinolones. Albicidin
was shown to inhibit the religation of the cleaved DNA
intermediate during the gyrase catalytic sequence, and also
inhibit the relaxation of supercoiled DNA by gyrase and
topoisomerase IV. Furthermore, E. coli strains harboring
quinolone (GyrA S83L) and CcdB (GyrA R462C) resistant
mutations showed cross-resistance to albicidin suggesting a
similar mechanism of action.

Albicidin resistance mutants of E. coli have not
demonstrated cross-resistance to inhibitors of the gyrase
subunits, or to other DNA replication inhibitors [22]. This
might be hampered by the fact that albicidin resistant E. coli
arise at high frequency by mutations in tsx, the gene for an
outer membrane protein involved in the active uptake of
nucleosides from the surrounding medium [29, 30].

DNA gyrase as a drug target

DNA gyrase is known to be the target of several classes of
antimicrobial agents [31]. Quinolones are synthetic com-
pounds that target DNA gyrase A and act by stabilizing the
DNA gyrase-DNA cleavage complex, thus inhibiting DNA
supercoiling. Shortly after binding the Gyrase-DNA com-
plex, quinolones induce a conformational change in the
enzyme. Once the gyrase has cleaved the DNA, the qui-
nolone traps this complex and prevents the religation of the
DNA strands. Consequently, the quinolone-gyrase-DNA
complex inhibits DNA replication [32].

In contrast, coumarins (coumermycin A1 and novobio-
cin) are natural products of Streptomyces which inhibit
DNA gyrase by competing with ATP for binding to the
Gyrase B subunit [27, 31, 33]. Enzymatic analysis of the 43
kDa amino-terminal fragment of GyrB shows that it con-
tains a coumarin sensitive ATPase activity. It has been
shown that novobiocin is a noncompetitive inhibitor of the
ATPase activity and binds a monomer of the 47 kDa GyrB
fragment, whereas coumermycin which resembles a dimer
of novobiocin, forms a complex with a dimer of the 47 kDa
fragment [31].

Selective site-specific mutagenesis of DNA gyrase has
revealed that mutations which confer resistance to quinolones
map to both gyrase A and B subunits, while those conferring
resistance to coumarins map to gyrase B [31]. Mutations
which confer resistance to these drugs are shown in Fig. 1.

Other agents which target DNA gyrase include microcin
B17, CcdB, simocyclinones, cyclothialidine, cinodine and
clerocidin [31, 34, 35]. Microcin B17, CcdB, and clerocidin
inhibit the supercoiling assay by stabilizing the Gyrase-DNA
complex [31, 36]. In contrast, simocyclinones inhibit an early
catalytic step of the gyrase by interfering with enzyme-DNA
binding [34]. Cyclothialidine inhibits the ATPase activity of

gyrase by competing for the ATP binding site [37]. The
precise mode of action of these agents with gyrase is
incompletely understood, although resistance to some of these
compounds has been mapped to a specific unit of gyrase.

Structure and function of the albicidin biosynthetic
pathway

Transposon mutagenesis revealed that at least two gene
clusters spanning more than 60 kb in the genome X. albi-
lineans are involved in albicidin production [38, 39]. Sub-
sequently, three genes required for albicidin biosynthesis
were identified, cloned, and sequenced from two Queens-
land strains of X. albilineans [14, 40, 41]. A study with X.
albilineans strain Xa23R1 from Florida revealed that three
gene clusters, containing a total of 22 open reading frames
(ORFs), are involved in albicidin biosynthesis [11, 42].
Figure 2 shows the major albicidin biosynthetic cluster
containing 19 ORFs.

Nonribosomal peptide and polyketide synthases

Polyketide synthases (PKSs) and nonribosomal peptide
synthetases (NRPSs) are structurally and mechanistically
related to fatty acid synthases, all of which catalyze the

Fig. 1 Domain organization of E. coli DNA gyrase. The a GyrA (97
kDa) and b GyrB (90 kDa) proteins are represented as linear blocks
with proposed domain boundaries indicated. Key amino acids referred
to in the text are also shown. Amino acid 122 in GyrA is the active-site
tyrosine. Amino acids whose mutation leads to drug resistance are
numbered in italics. Quinolone-resistance mutations map to GyrA
(86–106) and GyrB (426 and 447). Mutation at GyrB (136) confers
coumarin resistance, a mutation at GyrB (751) confers Microcin B17
resistance and mutations at GyrA (214 and 462) confer resistance to
the F plasmid protein CcdB. Adapted from [31, 68–70]
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synthesis of biopolymers in the absence of a nucleic acid or
other templates [43].

In an NRPS the modules can be further subdivided into
three functional domains: the adenylation domain (A)
activates amino acids, a peptidyl carrier protein (PCP)
attaches the growing polypeptide and a condensation
domain (C) that catalyzes the formation of the peptide bond
[43]. By analogy, a PKS module consists of three domains:
the acyltransferase domain activates acyl-CoA; the acyl
carrier protein (ACP) domain tethers the growing polyke-
tide and the ketosynthase domain (KS) forms the bond.
Each NRPS or PKS system also has a domain for loading a
starter unit onto the first PKS/NRPS module and a chain-
terminating thioesterase (TE) domain [44].

The NRPS substrate-binding pockets are so highly spe-
cific for their substrates that predictive models based upon
consensus signature motifs for known substrates have been
determined. Substrate specificity is determined at the
binding pocket, consisting of a stretch of about 100 amino
acid residues between highly conserved motif A4 and A5
[45]. Based on sequence analysis of known A domains, in
relation to the crystal structure of the GrsA substrate-
binding pocket, models have been developed to predict
substrate specificity from 8 or 10 amino acids lining the
pocket [46, 47].

Sequence analysis of the X. albilineans biosynthetic
region showed that it contains one large multifunctional
fused PKS-NRPS gene (designated xabB/AlbI) and two
small NRPS genes (designated albIV and albIX) [11, 14].
xabB (syn. albI) encodes an enzyme of 6879 amino acids
(aa) with several domains involved in polyketide and pep-
tide synthesis. The PKS region of XabB is divided into
three modules (Fig. 3). The module designated PKS-1
contains acyl-CoA ligase and acyl carrier protein (ACP1)
domains. The module designated PKS-2 contains ®-ketoacyl
synthase (KS1) and ®-ketoacyl reductase (KR) domains

followed by two consecutive ACP domains (ACP2 and
ACP3). The module designated PKS-3 contains a KS
domain (KS2) followed by a PCP domain (PCP1) [11, 14].

The PKS module of XabB is connected to four NRPS
modules, by the PCP1 domain. The first three NRPS
domains contain the general order of C, A and PCP domains
typical of such enzymes [48] and NRPS-4 contains only a
single C domain. The NRPS region of XabB contains a
duplicated region corresponding to NRPS-1 and NRPS-3.
This indicates that two identical amino acids are added to
the growing chain by NRPS-1 and NRPS-3 separated by an
amino acid that is added by NRPS-2 [11].

AlbIV forms one NRPS which contains a single A
domain followed by a PCP domain. NRPS AlbIX contains
two NRPS modules, the first module containing an A and a
PCP domain while the second module contains a C, A and
PCP domain. Interestingly the A and PCP domains of both
NRPS modules in AlbIX are identical, implying that they
load the same amino acid onto the growing albicidin chain.
At the end of the polypeptide is a TE domain responsible for
terminating the growing chain [11].

Modifying and regulatory enzymes

Once the polypeptide chains have been released, they fre-
quently undergo further enzymatic modification by ancillary
enzymes (e.g., methyltransferases, hydroxylases and gly-
cosyl transferases). This subsequent modification is gen-
erally required for the final product to be biologically active
[49]. Most tailoring enzymes are dedicated to the biosyn-
thetic pathway itself and are encoded by genes that are
clustered with the core PKS and NRPS genes [48, 50].

The major biosynthetic gene cluster of albicidin contains
two methyltransferases (xabC and xabD) that utilize S-
adenosyl-methionine as a co-substrate for O-methylation of
small molecules [51–53]. Evidence from insertional muta-
genesis and complementation proves that xabC is involved
in albicidin biosynthesis in X. albilineans [41]. There are
four other ORFs designated xabJ (possible alpha/beta fold
hydrolase COG0596, with 39% similarity over 260 aa to
GenBank Accession AA054683), xabK (probable benzoyl-
CoA oxygenase OG3396, with 54% similarity over 426 aa
to AAN39376), xabL (probable dienelactone hydrolase
COG4188, with 58% similarity over 278 aa to
ZP_00172356) [54] and albV (probable carbamoyl trans-
ferase, with 46% similarity over 441 aa to AAG02370 from
Streptomyces verticillus [11].

The production of antibiotics is associated with tight
regulation of expression in the producing organism. This
regulation involves switching on the biosynthetic genes
during the correct phase of growth and controlling the
export of the antibiotic. The biosynthetic gene cluster of
albicidin contains one regulatory gene (designated albVIII)

Fig. 2 Physical map and genetic organization of the DNA region
containing the albicidin gene cluster involved in albicidin production.
The location and direction of the 19 open reading frames (ORFs)
identified in the gene cluster are shown by thick arrows. The three
polyketide synthase and nonribosomal peptide synthase genes are
shown by black and thick arrows. Modified from [11] to show the
arrangement of genes involved in albicidin biosynthesis
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[11]. Analysis of albVIII showed it is most similar to the
syringomycin regulatory gene syrP from Pseudomonas
syringae. Searches of protein sequence databases demon-
strated that syrP was most similar to histidine kinases such
as the CheA regulatory protein of E. coli. Site-directed
insertional mutagenesis of the syrP gene [55], exhibited an
unusual pleiotropic phenotype including a failure to pro-
duce syringomycin in liquid media in contrast to the pro-
duction of elevated levels of the toxin on agar media.
Furthermore, the syrP mutant was relieved of the suppres-
sion of toxin production that accompanies inorganic phos-
phate concentrations of >1 mM on agar media [55].

Precursor synthesis genes

Polyketide and polypeptide antibiotic biosynthesis begin
with activation of starter units followed by elongation of the
antibiotic backbone by the large PKS and NRPS enzymes.
The albicidin biosynthetic cluster contains several genes
which may have a role in the production of precursor
molecules. Genes designated ubiC and pabAB show simi-
larity to PHBA (para-hydroxybenzoate) synthase and
PABA (para-aminobenzoate) synthase respectively
[56, 57]. Furthermore, these albicidin precursors might be
activated by another gene xabE (syn. AlbVII) which
showed similarity to benzoate CoA ligase.

Resistance genes

Antibiotic biosynthetic genes are often clustered with one or
more genes conferring resistance to the antibiotic in bacteria

[1]. The major albicidin biosynthetic cluster contains two
genes for self-protection. albF is an ABC transporter
involved in the active efflux of albicidin. Expression of
albF in E. coli increased albicidin resistance by 30–50 fold
[54]. Another gene albG shows similarity to quinolone-
resistance gene qnr. Expression of albG in E. coli conferred
significant albicidin resistance. Furthermore, the addition of
purified AlbG to the in vitro DNA gyrase supercoiling assay
conferred albicidin resistance suggesting an interaction with
the DNA gyrase subunits [10].

Resistance to albicidin is conferred by genes present in
other bacteria. AlbD produced by Pantoea dispersa is an
endopeptidase that directly cleaves the peptide bond of
albicidin and subsequently rendering it inactive [58].
While, AlbA synthesized by Klebsiella oxytoca binds to
albicidin and completely inhibits its activity [59, 60].

X. albilineans DNA gyrase

As albicidin is a potent inhibitor of DNA gyrase, the albi-
cidin producer X. albilineans would require resistance
mechanisms for self-protection. In vitro supercoiling assays
with purified DNA gyrase subunits of X. albilineans
showed a 25-fold resistance to albicidin and ciprofloxacin in
comparison to the E. coli DNA gyrase [61]. However, when
the X. albilineans DNA gyrase A subunit was substituted
with E. coli DNA gyrase A in the assay, this combination
was as sensitive as the E. coli DNA gyrase AB suggesting
that resistance to albicidin is conferred by the DNA gyrase
A subunit.

Fig. 3 Model for the synthesis of albicidin by the three polyketide
synthase (PKS) modules and the seven nonribosomal peptide synthase
(NRPS) modules identified in albicidin biosynthetic cluster. Boxes
with dotted lines around the chemical structure of albicidin indicate the
stepwise synthesis by PKSs and NRPSs. Abbreviations: A adenyla-
tion, ACP acyl carrier protein, AL acyl-CoA ligase, C condensation,

KR ®-ketoacyl reductase, KS ®-ketoacyl synthase, NRPS non-
ribosomal peptide synthase, PCP peptidyl carrier protein, PKS poly-
ketide synthase, TE thioesterase. The question mark in the NRPS-2
domain indicates that this A domain is incomplete. Modified from [11]
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Structure of albicidin

Structural analysis of albicidin has shown that it consists of
p-aminobenzoic acids and cyanoalanine with a chemical
formula [M+H]C44H39O12N6 and molecular weight of
843.8260 Da [56]. It consists of the nonproteinogenic α-
amino acid β-cyano-L-alanine (Cya-3), the aromatic δ-
amino acids p-aminobenzoic acid (pABA-2 and pABA-4)
and 4-amino-2-hydroxy-3-methoxybenzoic acid (pMBA-5
and pMBA-6). The main structure is linked with 3-(4-
hydroxyphenyl)-2-methyl acrylic acid at the N-terminal
(Fig. 3).

Strategies for improving the production of albicidin

Albicidin is a potent antibiotic that with minimum inhibitory
concentrations significantly less than many current DNA
gyrase inhibitors. However, albicidin production is limited
from X. albilineans and other strategies are needed to improve
the production of albicidin to realize its clinical potential.

Heterologous production

Heterologous biosynthesis of compounds in bacteria
relying on transforming the complete biosynthetic cluster
into a host bacterium can be used to increase production.
Since the complete genome of X. albilineans has been
sequenced and the albicidin biosynthetic cluster has been
identified, heterologous expression of albicidin would be
feasible. Recently, the complete biosynthetic cluster of
albicidin was transferred to Xanthomonas axonopodis pv.
Vesicatoria [62]. Albicidin production was increased
sixfold compared to X. albilineans suggesting a promising
strategy for engineering overproduction. The advantage of
the heterologous host offers a fast-growing bacterium
which is easily amenable to genetic modification com-
pared to X. albilineans. Further modifications to improve
albicidin production includes: (i) addition of constitutive
promoters to upregulate transcription (ii) the use of codon
optimization to improve translation and (iii) addition of
albicidin efflux pumps to improve albicidin secretion.

Total synthesis of albicidin

Another strategy to improve albicidin production is chemical
synthesis. In 2015, a convergent total synthesis approach was
used to synthesize albicidin [63]. Three different fragments of
albicidin were synthesized in this strategy; (i) an N-terminal
coumaric acid, (ii) a central tripeptide and (iii) C-terminal
dipeptide. The central tripeptide was coupled to the C-terminal
peptide by BTC-mediated coupling resulting in a pentapeptide.
Finally, quantitative BTC-mediated coupling to coumaric acid
and global allyl deprotection resulted in albicidin.

Antimicrobial activity of the synthesized albicidin was shown
to be in accordance with that of natural albicidin (IC50: 40
nM).

The structure and chemical synthesis of albicidin open the
possibility of synthesis of albicidin derivatives with improved
biological activity. Albicidins were produced with N-terminal
acylation to improve antimicrobial activity [64]. Fourteen
derivatives were synthesized with variable cinnamoyl, phe-
nylpropanoyl, and benzoyl N-terminal residues. Derivatives
with substitutions in the para-position of benzoyl N-terminal
group were shown to be the most significant in terms of
activity while short N-acetylated derivatives showed sig-
nificantly reduced activity.

Modification to the central amino acid of albicidin with
various amino acids was performed to determine the effect of
charge, chirality, and steric bulk on antimicrobial activity
[65]. It was found that charged amino acids reduce albicidin
activity while uncharged amino acids retain activity. Threo-
nine was found to be the most promising in increasing albi-
cidin activity.

A recent study used LC–MS/MS bioactivity-guided spec-
tral networking analysis of albicidin extracts from X. albili-
neans to identify eight different natural albicidins with
differential activity against gram-positive and gram-negative
bacteria [66].

The albicidin biosynthetic cluster also contains an O-
Carbamoyl-Transferase (Alb15) which carbamoylates albi-
cidin at the N-terminal resulting in carbamoyl-albicidin [67].
DNA gyrase supercoiling assays showed that carbamoyl-
albicidin was six times more potent in inhibiting bacterial
gyrase activity when compared to albicidin. In vivo assays
showed that carbamoyl-albicidin was differential in its
effects on gram-negative bacteria, while it showed similar
activity to albicidin in gram-positive strains [67].

Conclusion

Albicidin is a potent DNA gyrase inhibitor with con-
centrations significantly less than current DNA gyrase
inhibitors used clinically. Recent studies have identified the
complete biosynthetic cluster of albicidin, produced albici-
din in heterologous hosts, solved the structure, and chemi-
cally synthesized albicidin and its derivatives. These recent
advancements should help to realize the clinical potential of
albicidin as new antibiotics are urgently needed to combat
multi-antibiotic-resistant bacteria.
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