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Abstract
Polymyxin B (PMB), a last-line antibiotic used against antibiotic-resistant superbugs, causes undesirable cytotoxic side
effects. However, its mechanisms remain unknown. In this study, we unexpectedly found that caspase-3, a main executor of
apoptosis, plays a protective role in PMB-induced cytotoxicity. Caspase-3 knockout (KO) cells exhibited higher
susceptibility to PMB-induced cytotoxicity compared with wild-type (WT) cells, accompanied by increased levels of
reactive oxygen species (ROS). Interestingly, co-treatment with the antioxidant N-acetylcysteine (NAC) rescued cell
viability to a similar extent as WT cells. Furthermore, PMB failed to facilitate the processing of inactive caspase-3 (pro-
caspase-3) into active forms, suggesting that pro-caspase-3 nonenzymatically suppresses PMB-driven ROS accumulation
and its cytotoxicity. Thus, our findings that demonstrate the potential ability of PMB to stimulate ROS generation, but
which is normally masked by pro-caspase-3-dependent mechanisms, may provide novel insights into the mechanisms of
PMB-induced side effects.

Polymyxin B (PMB), a polypeptide antibiotic that is
approved for the treatment of Gram-negative bacterial
infections, exerts antibiotic activity by disrupting bacterial
membrane integrity [1–3]. It is known that PMB is one of
the few drugs that are active against multidrug-resistant
Gram-negative bacteria such as Pseudomonas aeruginosa
[4, 5]. On the other hand, it is widely known that PMB
causes undesirable cytotoxic side effects including
nephrotoxicity [6, 7]. A possible mechanism to explain the
PMB-induced cytotoxicity is that PMB stimulates the acti-
vation of caspase-mediated apoptotic pathways [8]. How-
ever, the PMB-induced cellular responses associated with

its cytotoxicity are largely unknown. In this study, we thus
investigated the cellular responses induced by PMB to
understand the precise mechanisms of PMB-induced
cytotoxicity.

At first, to confirm previous studies that have demon-
strated that PMB induces cytotoxicity [8], we performed the
cell viability assays in various culture cell lines, as pre-
viously described [9]. As shown in Fig. 1a, PMB exhibited
decreased viability of all cell lines, including human
embryonic kidney (HEK) 293A cells, mouse embryonic
fibroblasts (MEF), and human fibrosarcoma HT1080 cells,
in a dose-dependent manner. We next assessed whether the
reduction of cell viability is responsible for growth inhibi-
tion or cytotoxicity. Lactate dehydrogenase (LDH) activity
assay is commonly used to evaluate cytotoxicity [10], which
revealed that PMB causes cytotoxicity in a dose-dependent
manner (Fig. 1b). To verify the results of past paper
demonstrating that PMB induces cytotoxicity through
apoptosis mediated by the caspase cascade [8], we exam-
ined whether PMB activates caspases by evaluating the
caspase activation using immunoblot analysis as previously
described [11]. In general, caspases are present in enzy-
matically inactive forms called pro-caspases, and the acti-
vation of caspases are induced by cleavage of pro-caspases
into active forms [12]. However, we could not detect the
cleaved (activated) forms of representative caspases such as
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caspase-3, -8, and -9, whereas Fas/CD95 ligand (FasL), a
cytotoxic cytokine that causes apoptosis, clearly induced the
cleavage (activation) of these caspases (Fig. 1c). Moreover,
the pan-caspase inhibitor Z-VAD-fmk actually failed to
suppress PMB-induced cytotoxicity (Fig. 1d), unlike FasL-
treated cells (Fig. 1e). These observations show that apop-
tosis is not induced at least under our experimental condi-
tion, and thus we concluded that not only apoptosis but also
other types of cell death including non-programmed cell
death (necrosis, etc.) are involved in PMB-induced
cytotoxicity.

To further evaluate the involvement of apoptosis in
PMB-induced cytotoxicity, we established caspase-3
knockout (KO) HT1080 cells by using CRISPR/
Cas9 system [13], and confirmed the loss of caspase-3
protein (Fig. 2a). Given that apoptosis is not responsible
for PMB-induced cytotoxicity, we predicted that the extent
of cytotoxicity might not be altered in caspase-3 knockout
(KO) cells. However, we unpredictably found that caspase-

3 KO HT1080 cells displayed significantly reduced viability
in response to PMB (Fig. 2b), whereas they were highly
resistant to FasL-mediated apoptosis, which is a reasonable
result (Fig. 2c). Moreover, LDH assay revealed that
PMB-induced cytotoxicity is exacerbated by caspase-3
knockout (Fig. 2d). These observations suggest that
caspase-3 plays a protective role in PMB-induced cyto-
toxicity. Importantly, since PMB failed to cleave caspase-3
into the active form shown in Fig. 1b, pro-caspase-3 may
nonenzymatically exert its protective functions against
PMB. Recent evidence has strikingly demonstrated the non-
apoptotic functions of pro-caspase-3 that contribute to cell
survival [14, 15]. Notably, it turned out that pro-caspase-3
plays a role in mitochondrial homeostasis, and the loss of
pro-caspase-3 leads to increased levels of reactive oxygen
species (ROS) due to mitochondrial dysfunction [14]. On
the other hand, recent evidence has implied the involvement
of ROS in the toxicity of PMB [16]. We, therefore,
speculated that the accelerated ROS generation exacerbates
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Fig. 1 a, b Cells were treated with the indicated concentrations of
PMB for 24 h, and then subjected to cell viability assay (a) or LDH
assay (b). c HT1080 cells were treated with 800 µg ml−1 PMB or
50 ng ml−1 FasL for indicated periods, and then immunoblot analysis
was performed with the indicated antibodies. d, e HT1080 cells were
treated with 800 µg ml−1 PMB for 24 h or 50 ng ml−1 FasL for 16 h
with or without 20 μM Z-VAD-fmk, and then subjected to cell

viability assay. DW; distilled water. DMSO; dimethyl sulfoxide. PBS;
phosphate-buffered saline. a, b, d, e Data shown are the mean ± SD.
Significant differences were determined by two-way ANOVA, fol-
lowed by Tukey–Kramer test; ***p < 0.001. All data are representative
of at least three independent experiments. Experimental procedures are
described in supporting information
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the PMB cytotoxicity in caspase-3 KO HT1080 cells, and
performed microscopic analysis using the ROS indicator 2′,
7′-dichlorodihydrofluorescein diacetate (DCFH-DA) as

previously described [13]. As expected, PMB enhances
ROS generation in caspase-3 KO HT1080 cells when
compared with WT HT1080 cells (Fig. 2e, f). Moreover, we
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found that the antioxidant N-acetylcysteine (NAC) can
rescue the viability of caspase-3 KO HT1080 cells to a
similar extent to WT HT1080 cells (Fig. 2g). Collectively,
these observations show that PMB has the ability to cause
ROS-mediated cytotoxicity, but which is normally masked
by pro-caspase-3-dependent mechanisms that suppress ROS
accumulation. On the other hand, NF-E2-related factor-2
(Nrf2) is a transcription factor that protects cells from ROS-
mediated cytotoxicity [17], and its reactivity to ROS in
HT1080 cells has been confirmed in our recent study
(Suzuki M el al., unpublished data). Interestingly, ML385,
the specific inhibitor of Nrf2, exacerbated PMB-induced
cytotoxicity in not only HT1080 cells but also MEFs and
HEK293A cells (Fig. 2h–j). These findings suggest that
blocking of the Nrf2 activation by ML385 allows PMB-
driven ROS accumulation regardless of cell types, which
affects on the susceptibility to PMB.

In the present study, we demonstrate that pro-caspase-3
contributes to cell survival upon exposure to PMB. As
shown in Fig. 2, loss of caspase-3 increased susceptibility to
PMB due to ROS accumulation, indicating that the down-
regulation or dysfunction of pro-caspase-3 exacerbates the
side effects of PMB including nephrotoxicity. In this regard,
a previous report has demonstrated that minocycline, a
second-generation tetracycline, suppresses caspase-3
expression at mRNA levels [18]. Moreover, immunohisto-
chemical analysis of caspase-3 expression in vivo has
shown that expression levels of caspase-3 in the kidney
glomeruli are relatively low [19]. These observations raise
the possibility that chemical substances enriched by the
urine concentration and lesser expression of caspase-3 in the
kidney glomeruli affect the onset of the nephrotoxicity
induced by PMB. Thus, although further studies are
required for the elucidation of the mechanisms by which

pro-caspase-3 suppresses PMB-induced ROS generation,
our results uncovered novel functions of caspase-3 asso-
ciated with PMB-induced cytotoxicity, which may help to
elucidate the mechanism underlying the cytotoxicity
of PMB.
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