Heterologous production of coryneazolicin in Escherichia coli

Abstract

Coryneazolicin is a plantazolicin family peptide, belonging to linear azole-containing peptides (LAPs). Although coryneazolicin was previously synthesized by in vitro experiments, its biological activity has not been evaluated. In this report, the heterologous production of coryneazolicin was accomplished to obtain enough coryneazolicin for biological activity tests. The structure of coryneazolicin was confirmed by ESI-MS and NMR analyses. The biological activity tests indicated that coryneazolicin possessed potent antibacterial activity and cytotoxicity. Although antibacterial activity of plantazolicin was previously reported, cytotoxicity was newly found in coryneazolicin among plantazolicin type peptides. In addition, we revealed that coryneazolicin induced apoptosis on HCT116 and HOS cancer cell lines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Budisa N. Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Curr Opin Biotechnol. 2013;24:591–8.

    CAS  Article  Google Scholar 

  2. 2.

    Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genom. 2014;15:983.

    Article  Google Scholar 

  3. 3.

    Link AJ. Biosynthesis: leading the way to RiPPs. Nat Chem Biol. 2015;11:551–2.

    CAS  Article  Google Scholar 

  4. 4.

    Sardar D, Schmidt EW. Combinatorial biosynthesis of RiPPs: docking with marine life. Curr Opin Chem Biol. 2016;31:15–21.

    CAS  Article  Google Scholar 

  5. 5.

    McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 2001;25:285–308.

    CAS  Article  Google Scholar 

  6. 6.

    Willey JM, van der Donk WA. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol. 2007;61:477–501.

    CAS  Article  Google Scholar 

  7. 7.

    Maksimov MO, Pan SJ, James Link A. Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep. 2012;29:996–1006.

    CAS  Article  Google Scholar 

  8. 8.

    Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res. 2015;48:1909–19.

    CAS  Article  Google Scholar 

  9. 9.

    Li Y, Zirah S & Rebuffat S. Lasso peptides: bacterial strategies to make and maintain bioactive entangled scaffolds. Springer-Verlag, New York; 2015.

  10. 10.

    Melby JO, Nard NJ, Mitchell DA. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol. 2011;15:369–78.

    CAS  Article  Google Scholar 

  11. 11.

    Liu J. Microcin B17: posttranslational modifications and their biological implications. Proc Natl Acad Sci USA. 1994;91:4618–20.

    CAS  Article  Google Scholar 

  12. 12.

    Yorgey P, et al. Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA. 1994;91:4519–23.

    CAS  Article  Google Scholar 

  13. 13.

    Todd EW. The differentiation of two distinct serological varieties of streptolysin, streptolysin O and streptolysin S. J Pathol Bacteriol. 1938;47:423–45.

    CAS  Article  Google Scholar 

  14. 14.

    Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol. 2011;9:670–81.

    CAS  Article  Google Scholar 

  15. 15.

    Wessels MR. Streptolysin S. J Infect Dis. 2005;192:13–15.

    Article  Google Scholar 

  16. 16.

    Ozaki T, et al. Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun. 2017;8:14207.

    CAS  Article  Google Scholar 

  17. 17.

    Ozaki T, et al. Insights into the biosynthesis of dehydroalanines in goadsporin. Chembiochem. 2016;17:218–23.

    CAS  Article  Google Scholar 

  18. 18.

    Onaka H, Tabata H, Igarashi Y, Sato Y, Furumai T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J Antibiot. 2001;54:1036–44.

    CAS  Article  Google Scholar 

  19. 19.

    Igarashi Y, et al. Goadsporin, a chemical substance which promotes secondary metabolism and Morphogenesis in streptomycetes. II. Struct Determ J Antibiot. 2001;54:1045–53.

    CAS  Article  Google Scholar 

  20. 20.

    Onaka H, Nakaho M, Hayashi K, Igarashi Y, Furumai T. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiology. 2005;151:3923–33.

    CAS  Article  Google Scholar 

  21. 21.

    Kalyon B, et al. Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett. 2011;13:2996–9.

    CAS  Article  Google Scholar 

  22. 22.

    Molohon KJ, et al. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem Biol. 2011;6:1307–13.

    CAS  Article  Google Scholar 

  23. 23.

    Scholz R, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 2011;193:215–24.

    CAS  Article  Google Scholar 

  24. 24.

    Molohon KJ, et al. Plantazolicin is an ultra-narrow spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect Dis. 2016;2:207–20.

    CAS  Article  Google Scholar 

  25. 25.

    Wada H, Williams HE, Moody CJ. Total synthesis of the posttranslationally modified polyazole peptide antibiotic plantazolicin A. Angew Chem Int Ed Engl. 2015;54:15147–51.

    CAS  Article  Google Scholar 

  26. 26.

    Banala S, Ensle P, Sussmuth RD. Total synthesis of the ribosomally synthesized linear azole-containing peptide plantazolicin A from Bacillus amyloliquefaciens. Angew Chem Int Ed Engl. 2013;52:9518–23.

    CAS  Article  Google Scholar 

  27. 27.

    Fenner S, Wilson ZE, Ley SV. The total synthesis of the bioactive natural product plantazolicin A and its biosynthetic precursor plantazolicin B. Chemistry. 2016;22:15902–12.

    CAS  Article  Google Scholar 

  28. 28.

    Wilson ZE, Fenner S, Ley SV. Total syntheses of linear polythiazole/oxazole plantazolicin A and its biosynthetic precursor plantazolicin B. Angew Chem Int Ed Engl. 2015;54:1284–8.

    CAS  Article  Google Scholar 

  29. 29.

    Deane CD, Melby JO, Molohon KJ, Susarrey AR, Mitchell DA. Engineering unnatural variants of plantazolicin through codon reprogramming. ACS Chem Biol. 2013;8:1998–2008.

    CAS  Article  Google Scholar 

  30. 30.

    Lee J, et al. Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis. Proc Natl Acad Sci USA. 2013;110:12954–9.

    CAS  Article  Google Scholar 

  31. 31.

    Piwowarska NA, Banala S, Overkleeft HS, Sussmuth RD. Arg-Thz is a minimal substrate for the Na,Na-arginyl methyltransferase involved in the biosynthesis of plantazolicin. Chem Commun. 2013;49:10703–5.

    CAS  Article  Google Scholar 

  32. 32.

    Deane CD, Burkhart BJ, Blair PM, Tietz JI, Lin A, Mitchell DA. In vitro biosynthesis and substrate tolerance of the plantazolicin family of natural products. ACS Chem Biol. 2016;11:2232–43.

    CAS  Article  Google Scholar 

  33. 33.

    Imbert M, Blondeau R. Effect of light on germinating spores of Streptomyces viridosporus. FEMS Microbiol Lett. 1999;181:159–63.

    CAS  Article  Google Scholar 

  34. 34.

    Heddle JG, et al. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol. 2001;307:1223–34.

    CAS  Article  Google Scholar 

  35. 35.

    Zamble DB, Miller DA, Heddle JG, Maxwell A, Walsh CT, Hollfelder F. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites. Proc Natl Acad Sci USA. 2001;98:7712–7.

    CAS  Article  Google Scholar 

  36. 36.

    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184:39–51.

    CAS  Article  Google Scholar 

  37. 37.

    Shin-ya K, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc. 2001;123:1262–3.

    CAS  Article  Google Scholar 

  38. 38.

    Di Modugno E, Erbetti I, Ferrari L, Galassi G, Hammond SM, Xerri L. In vitro activity of the tribactam GV104326 against gram-positive, gram-negative, and anaerobic bacteria. Antimicrob Agents Chemother. 1994;38:2362–8.

    Article  Google Scholar 

  39. 39.

    Yang CL, et al. Strepchazolins A and B: two new alkaloids from a marine Streptomyces chartreusis NA02069. Mar Drugs. 2017;15:E244.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Japan Society for the Promotion of Science by Grants-in-aids (grant number 16K01913). The NMR spectra were recorded on Bruker Avance 600 and Avance III HD 800 spectrometers at the Advanced Analysis Center, NARO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shinya Kodani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takuma, M., Kuroha, M., Nagano, Y. et al. Heterologous production of coryneazolicin in Escherichia coli. J Antibiot 72, 800–806 (2019). https://doi.org/10.1038/s41429-019-0212-x

Download citation