Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis

Abstract

Two novel depsipeptides xenematides F and G (1, 2), were isolated from entomopathogenic Xenorhabdus budapestensis SN84 along with a known compound xenematide B. The structures of the two new molecules were elucidated using NMR, MS and Marfey’s method. The xenematide G (2) contains α-aminoheptanoic acid, a non-protein amino acid that is rarely found in secondary metabolites from entomopathogenic bacteria. Xenematides F and G were tested for antibacterial activity. Xenematide G (2) exhibited moderate antibacterial activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Richards GR, Goodrich-Blair H. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol. 2009;11:1025–33.

    CAS  Article  Google Scholar 

  2. 2.

    Crawford JM, Kontnik R, Clardy J. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol. 2010;20:69–74.

    CAS  Article  Google Scholar 

  3. 3.

    Goodrich-Blair H, Clarke DJ. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol. 2007;64:260–8.

    CAS  Article  Google Scholar 

  4. 4.

    Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions. Nat Prod Rep. 2018;35:309–35.

    CAS  Article  Google Scholar 

  5. 5.

    Gualtieri M, Aumelas A, Thaler J-O. Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot. 2009;62:295–302.

    CAS  Article  Google Scholar 

  6. 6.

    Bode HB, Reimer D, Fuchs SW, Kirchner F, Dauth C, Kegler C, et al. Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chem Eur J. 2012;18:2342–8.

    CAS  Article  Google Scholar 

  7. 7.

    Ohlendorf B, Simon S, Wiese J, Imhoff JF. Szentiamide, an N-formylated cyclic depsipeptide from Xenorhabdus szentirmaii DSM 16338T. Nat Prod Commun. 2011;6:1247–50.

    CAS  PubMed  Google Scholar 

  8. 8.

    Zhou Q, Dowling A, Heide H, Wöhnert J, Brandt U, Baum J, et al. Xentrivalpeptides A–Q: depsipeptide diversification in Xenorhabdus. J Nat Prod. 2012;75:1717–22.

    CAS  Article  Google Scholar 

  9. 9.

    Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF. Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod. 2008;71:1074–7.

    CAS  Article  Google Scholar 

  10. 10.

    Crawford JM, Portmann C, Kontnik R, Walsh CT, Clardy J. NRPS substrate promiscuity diversifies the xenematides. Org Lett. 2011;13:5144–7.

    CAS  Article  Google Scholar 

  11. 11.

    Xiao Y, Meng FL, Qiu DW, Yang XF. Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10. Peptides. 2012;35:253–60.

    CAS  Article  Google Scholar 

  12. 12.

    Reimer D, Cowles KN, Proschak A, Nollmann FI, Dowling AJ, Kaiser M, et al. Rhabdopeptides as insect-specific virulence factors from entomopathogenic bacteria. ChemBioChem. 2013;14:1991–7.

    CAS  Article  Google Scholar 

  13. 13.

    Zhao L, Kaiser M, Bode HB. Rhabdopeptide/Xenortide-like peptides from Xenorhabdus innexi with terminal amines showing potent antiprotozoal activity. Org Lett. 2018;20:5116–20.

    CAS  Article  Google Scholar 

  14. 14.

    Piel J. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol. 2011;65:431–53.

    CAS  Article  Google Scholar 

  15. 15.

    Brachmann AO, Bode HB. Identification and bioanalysis of natural products from insect symbionts and pathogens. Adv Biochem Eng Biot. 2013;135:123–55.

    CAS  Google Scholar 

  16. 16.

    Masanori F, Satoshi B, Toshio T, Masaaki K, Yasuo O, Masahiro T, et al. Structure-based gene targeting discovery of sphaerimicin, a bacterial translocase I inhibitor. Angew Chem. 2013;125:11821–5.

    Article  Google Scholar 

  17. 17.

    Owen JG, Reddy BVB, Ternei MA, Charlop-Powers Z, Calle PY, Kim JH, et al. Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc Natl Acad Sci USA. 2013;110:11797–802.

    CAS  Article  Google Scholar 

  18. 18.

    Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth M, Shi YM, et al. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat Microbiol. 2017;2:1676–85.

    CAS  Article  Google Scholar 

  19. 19.

    Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc. 2010;132:2469–93.

    CAS  Article  Google Scholar 

  20. 20.

    Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol. 2014;41:175–84.

    CAS  Article  Google Scholar 

  21. 21.

    Hindra Huang TT, Yang D, Rudolf JD, Xie PF, Xie G, et al. Strain prioritization for natural product discovery by a high-throughput real-time PCR method. J Nat Prod. 2014;77:2296–303.

    Article  Google Scholar 

  22. 22.

    Shi DS, An R, Zhang WB, Zhang GL, Yu ZG. Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. J Agric Food Chem. 2017;65:60–65.

    CAS  Article  Google Scholar 

  23. 23.

    Bi YH, Gao CZ, Yu ZG. Rhabdopeptides from Xenorhabdus budapestensis SN84 and their nematicidal activities against Meloidogyne incognita. J Agric Food Chem. 2018;66:3833–9.

    CAS  Article  Google Scholar 

  24. 24.

    Lu XZ, Shi DS, Gao CZ, Tian XM, Bi YH, Yu ZG. Isolation and identification of secondary metabolites from Xenorhabdus budapestensis SN19. Nat Prod ResDev. 2016;6:828–32.

    Google Scholar 

  25. 25.

    Yu ZG, Vodanovic-Jankovic S, Kron M, Shen B. New WS9326A Congeners from Streptomyces sp. 9078 inhibiting Brugia malayi asparaginyl-tRNA synthetase. Org Lett. 2012;14:4946–9.

    CAS  Article  Google Scholar 

  26. 26.

    Marfey P. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-Difluoro-2,4-dinitrobenzene. Carls Res Commun. 1984;49:591–6.

    CAS  Article  Google Scholar 

  27. 27.

    Fujii K, Ikai Y, Oka H, Suzuki M, Harada K. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey’s method with massspectrometry and its practical application. Anal Chem. 1997;69:5146–51.

    CAS  Article  Google Scholar 

  28. 28.

    Fang XL, Li ZZ, Wang YH, Zhang X. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J Appl Microbiol. 2011;111:145–54.

    CAS  Article  Google Scholar 

  29. 29.

    Kronvall G. Single-strain regression analysis for determination of interpretive breakpoints for cefoperazone disk diffusion susceptibility testing. J Clin Microbiol. 1983;17:975–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ. 2005;29:151–9.

    Article  Google Scholar 

  31. 31.

    Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991;19:6823–31.

    CAS  Article  Google Scholar 

  32. 32.

    Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. ChemInform. 2006;37:717–41.

    Article  Google Scholar 

  33. 33.

    Lawen A. Biosynthesis of cyclosporins and other natural peptidyl prolyl cis/trans isomerase inhibitors. BBA-Gen Subj. 2015;1850:2111–20.

    CAS  Article  Google Scholar 

  34. 34.

    Cai XF, Nowak S, Wesche F, Bischoff I, Kaiser M, Fürst R, et al. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nat Chem. 2016;9:379–86.

    Article  Google Scholar 

  35. 35.

    Bozhüyük KAJ, Fleischhacker F, Linck A, Wesche F, Tietze A, Niesert C-P, et al. De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem. 2017;10:275–309.

    Article  Google Scholar 

  36. 36.

    Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T, Sitthisak S, et al. Screening of the antimicrobial activity against drug resistant bacteria of Photorhabdus and Xenorhabdus associated with entomopathogenic nematodes from Mae Wong National Park, Thailand. Front Microbiol. 2017;8:1142.

    Article  Google Scholar 

Download references

Acknowledgements

This work are supported by Liaoning Province Fund for Nature (No. 01032017001), Shenyang Agricultural University Postdoctoral Fund (No. 770215012) and Shenyang Agricultural University Introducing Talent Fund (No. 880415016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Lu, X., Zhang, X. et al. Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis. J Antibiot 72, 736–743 (2019). https://doi.org/10.1038/s41429-019-0203-y

Download citation