Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Labrenzbactin from a coral-associated bacterium Labrenzia sp.

Abstract

A new catecholate-containing siderophore, labrenzbactin (1), was isolated from the fermentation broth of a coral-associated bacterium Labrenzia sp. The structure and absolute configuration of 1 was determined by spectroscopic methods and Marfey’s analysis. Overall, 1 showed antimicrobial activity against Ralstonia solanacearum SUPP1541 and Micrococcus luteus ATCC9341 with MIC values of 25 and 50 µg ml−1, respectively, and cytotoxicity against P388 murine leukemia cells with an IC50 of 13 µM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR. Marine natural products. Nat Prod Rep. 2016;33:382–431.

    CAS  Article  Google Scholar 

  2. 2.

    Hu Y, et al. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs. 2015;13:202–21.

    Article  Google Scholar 

  3. 3.

    Pollock FJ, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;22:1–14.

    Google Scholar 

  4. 4.

    Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser. 2006;322:1–14.

    CAS  Article  Google Scholar 

  5. 5.

    Biebl H, et al. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol. 2007;57:1095–107.

    CAS  Article  Google Scholar 

  6. 6.

    Camacho M, et al. Labrenzia salina sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. J Syst Evol Microbiol. 2016;66:5173–80.

    CAS  Article  Google Scholar 

  7. 7.

    Rodrigues GN, Lago-Lestón A, Costa R, Keller-Costa T. Draft genome sequence of Labrenzia sp. strain el143, a coral-associated Alphaproteobacterium with versatile symbiotic living capability and strong halogen degradation potential. Genome Announc. 2018;6:1–2.

    Google Scholar 

  8. 8.

    Schleissner C, et al. Bacterial production of a pederin analogue by a free-living marine Alphaproteobacterium. J Nat Prod. 2017;28:2170–3.

    Article  Google Scholar 

  9. 9.

    Moghaddam JA, et al. Cyclopropane-containing fatty acids from the marine bacterium Labrenzia sp. 011 with antimicrobial and GPR84 activity. Mar Drugs. 2018;16:1–16.

    Article  Google Scholar 

  10. 10.

    Miyanaga M, et al. Absolute configuration and antitumor activity of myxochelin A produced by Nonomuraea pusilla TP-A0861. J Antibiot. 2006;59:698–703.

    CAS  Article  Google Scholar 

  11. 11.

    Igarashi Y, et al. Ulbactins G and G, polycyclic thiazoline derivatives with tumor cell migration inhibitory activity from Brevibacillus sp. Org Lett. 2016;18:1658–1661.

    CAS  Article  Google Scholar 

  12. 12.

    Bhushan R, Brückner H. Marfey’s reagent for chiral amino acid analysis: a review. Amino Acids. 2004;27:231–47.

    CAS  Article  Google Scholar 

  13. 13.

    Peterson T, Neilands JB. Revised structure of a catecholamide spermidine siderophore from Paracoccus denitrificans. Tetrahedron Lett. 1979;50:4805–8.

    Article  Google Scholar 

  14. 14.

    Ong SA, Peterson T, Neilands JB. Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem. 1979;254:1860–5.

    CAS  PubMed  Google Scholar 

  15. 15.

    Yamamoto S, et al. Structures of two polyamine-containing catecholate siderophores from Vibrio fluvialis. J Biochem. 1993;113:538–44.

    CAS  Article  Google Scholar 

  16. 16.

    Griffiths GL, Sigel SP, Payne SM, Neilands JB. Vibriobactin, a siderophore from Vibrio cholera. J Biol Chem. 1984;259:383–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yasufumi Hikichi and Dr. Ayami Kanda at Kochi University for providing R. solanacearum SUPP1541.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raj Sharma, A., Zhou, T., Harunari, E. et al. Labrenzbactin from a coral-associated bacterium Labrenzia sp.. J Antibiot 72, 634–639 (2019). https://doi.org/10.1038/s41429-019-0192-x

Download citation

Further reading

Search

Quick links