Synthesis and biological evaluation of (±)-hippolachnin and analogs

Abstract

Due its unique structure and its reported potent antifungal activity, the marine polyketide hippolachnin A (1) has attracted much attention in the synthetic community. Herein, we describe the development of a concise, diversifiable and scalable synthesis of the racemic natural product, which serves as a platform for the generation of bioactive analogues. Biological testing of our synthetic material did not confirm the reported antifungal activity of hippolachnin A but unraveled moderate activity against nematodes and microbes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14

References

  1. 1.

    Kauffman CA. Cryptococcosis. In: Goldman L, Schafer AI, editors. Goldman-Cecil Medicine. 25th ed. Philadelphia: Elsevier Saunders; 2016: chap 336.

  2. 2.

    Govender NP, Patel J, van Wyk M, Chiller TM, Lockhart SR. Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates obtained through population-based surveillance in South Africa in 2002–3 and 2007–8. Antimicrob Agents Chemother. 2011;55:2606–11.

    CAS  Article  Google Scholar 

  3. 3.

    Loyse A, et al. Cryptococcal meningitis: improving access to essential antifungal medicines in resource-poor countries. Lancet Infect Dis. 2013;13:629–37.

    Article  Google Scholar 

  4. 4.

    Sabiiti W, et al. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Invest. 2014;124:2000–8.

    CAS  Article  Google Scholar 

  5. 5.

    Li SS, Mody CH. Cryptococcus. Ann Am Thorac Soc. 2010;7:186–96.

    Article  Google Scholar 

  6. 6.

    Hyde KD, Al-Hatmi A, Andersen B, Boekhout T, Buzina W, Dawson Jr TL, et al. The world’s ten most feared fungi. Fungal Divers 2018;93:161–94.

    Article  Google Scholar 

  7. 7.

    Piao SJ, et al. Hippolachnin A, a new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org Lett. 2013;15:3526–3529.

    CAS  Article  Google Scholar 

  8. 8.

    Rahm F, Harges PY, Kitching W. Metabolites from marine sponges of the genus Plakortis. Heterocycles. 2004;64:523–575.

    CAS  Article  Google Scholar 

  9. 9.

    Ruider SA, Sandmeier T, Carreira E-M. Total synthesis of (±)‐Hippolachnin A. Angew Chem Int Ed. 2015;54:2378–82.

    CAS  Article  Google Scholar 

  10. 10.

    McCallum ME, Rasik CM, Wood JL, Brown M-K. Collaborative Total synthesis: routes to (±)-Hippolachnin A enabled by quadricyclane cycloaddition and late-stage C–H oxidation. J Am Chem Soc. 2016;7:2437–42.

    Article  Google Scholar 

  11. 11.

    Datta R, Dixon RJ, Ghosh S. A convenient access to the tricyclic core structure of hippolachnin A. Tetrahedron Lett. 2016;57:29–31.

    CAS  Article  Google Scholar 

  12. 12.

    Xu ZJ, Wu Y. Efficient synthetic routes to (±)‐Hippolachnin A, (±)‐Gracilioethers E and F and the alleged structure of (±)‐Gracilioether I. Chem Eur J. 2017;23:2026–30.

    CAS  Article  Google Scholar 

  13. 13.

    Winter N, Trauner D. Thiocarbonyl Ylide chemistry enables a concise synthesis of (±)-Hippolachnin A. J Am Chem Soc. 2017;139:11706–9.

    CAS  Article  Google Scholar 

  14. 14.

    Li Q, et al. Enantioselective total syntheses of (+)-Hippolachnin A, (+)-Gracilioether A, (−)-Gracilioether E, and (−)-Gracilioether F. J Am Chem Soc. 2018;140:1937–44.

    CAS  Article  Google Scholar 

  15. 15.

    Demuynck ALW, et al. Retro‐diels–alder reactions of masked cyclopentadienones catalyzed by heterogeneous brønsted acids. Adv Synth Catal. 2010;352:3419–30.

    CAS  Article  Google Scholar 

  16. 16.

    Krasovskiy A, Kopp F, Knochel P. Soluble lanthanide salts (LnCl3·2 LiCl) for the Improved addition of organomagnesium reagents to carbonyl compounds. Angew Chem Int Ed Engl. 2006;45:497–500.

    CAS  Article  Google Scholar 

  17. 17.

    Zhu J, Yang J-Y, Klunder AJH, Liu Z-Y, Zwanenburg B. A stereo- and enantioselective approach to clavulones from tricyclodecadienone using flash vacuum thermolysis. Tetrahedron. 1995;51:5847–70.

    CAS  Article  Google Scholar 

  18. 18.

    Zweifel G, Steele RB. A new and convenient method for the preparation of isomerically pure alpha-beta-unsaturated derivatives via hydroalumination of alkynes. J Am Chem Soc. 1967;89:2754–5.

    CAS  Article  Google Scholar 

  19. 19.

    Effenberger F, Epple F, Eberhard JK, Bühler U, Sohn E. Carbonsäure‐trifluormethansulfonsäure‐ und ‐methansultonsäure‐anhydride, Darstellung und Dissoziationstendenz. Chem Ber. 1983;116:1183–94.

    CAS  Article  Google Scholar 

  20. 20.

    M Korach, DR Nielsen, WH Rideout, Cyclopentenediol. Org Synth. 1962,42:50.

  21. 21.

    Kobayashi Y, Ito M, Igarashi J. Alkylation of 4-substituted 1-acetoxy-2-cyclopentenes by using copper reagents derived from alkylmagnesium halides and copper(I) cyanide. Tetrahedron Lett. 2002;43:4829–32.

    CAS  Article  Google Scholar 

  22. 22.

    Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Weinheim: VCH; 1988.

  23. 23.

    Zhou T, Peters B, Maldonado MF, Govender T, Andersson PG. Enantioselective synthesis of chiral sulfones by ir-catalyzed asymmetric hydrogenation: a facile approach to the preparation of chiral allylic and homoallylic compounds. J Am Chem Soc. 2012;134:13592–5.

    CAS  Article  Google Scholar 

  24. 24.

    Chen J, Chen J, Xie Y, Zhang H. Enantioselective total synthesis of (−)‐stenine. Angew Chem Int Ed. 2012;51:1024–7.

    CAS  Article  Google Scholar 

  25. 25.

    Palma A, Serginson JM, Barrett AG. Synthesis of poly β ketoesters via double acylketene trapping. Tetrahedron Lett. 2015;56:674–6.

    CAS  Article  Google Scholar 

  26. 26.

    Reetz MT, Chatziiosifidis I, Schwellnus K. Allgemeines Verfahren zur intramolekularen α‐tert‐Alkylierung von Carbonylverbindungen. Angew Chem. 1981;93:716–17.

    CAS  Article  Google Scholar 

  27. 27.

    Dauben W-G, Koch K, Smith S-L-, Chapman O-L. Photoisomerizations in the α-tropolone series: the mechanistic path of the α-tropolone methyl ether to methyl 4-Oxo-2-cyclopentenylacetate Conversion. J Am Chem Soc. 1963;85:2616–21.

    CAS  Article  Google Scholar 

  28. 28.

    Barbasiewicz M, Michalak M, Grela K. A new family of halogen‐chelated Hoveyda–Grubbs‐type metathesis. Catal Chem Eur J. 2012;18:14237–41.

    CAS  Article  Google Scholar 

  29. 29.

    Stille JR, Santarsiero BD, Grubbs RH. Rearrangement of bicyclo[2.2.1]heptane ring systems by titanocene alkylidene complexes to bicyclo[3.2.0]heptane enol ethers. Total synthesis of (. + −)-.DELTA.9(12)-capnellene. J Org Chem. 1990;55:843–62.

    CAS  Article  Google Scholar 

  30. 30.

    Bonnaud B, Mariet N, Vacher B. Preparation of conformationally constrained α2‐antagonists: the bicyclo[3.2.0]heptane approach. Eur J Org Chem. 2006; 246–56.

    Article  Google Scholar 

  31. 31.

    Molander GA, Carey JS. Total synthesis of furanether B. An application of a [3 + 4] annulation strategy. J Org Chem. 1995;60:4845–9.

    CAS  Article  Google Scholar 

  32. 32.

    Magauer T, Mulzer J, Tiefenbacher K. Total syntheses of (+)-echinopine A and B: determination of absolute stereochemistry. Org Lett. 2009;11:5306–9.

    CAS  Article  Google Scholar 

  33. 33.

    Meier R, Trauner D. A synthesis of (±)‐plydactone. Angew Chem Int Ed. 2016;55:11251–5.

    CAS  Article  Google Scholar 

  34. 34.

    Huisgen R, Mloston G, Polborn K, Sustmann R. 1,3‐dithiolanes from cycloadditions of alicyclic and aliphatic thiocarbonyl ylides with thiones: regioselectivity. Chem Eur J. 2003;9:2256–63.

    CAS  Article  Google Scholar 

  35. 35.

    Huisgen R, Kalvinsch I, Li X, Mloston, G. The formation of 1,3‐dithiolanes from aromatic thioketones and diazomethane—the mechanism of the schönberg reaction. Eur J Org Chem. 2000; 1685–94.

    Article  Google Scholar 

  36. 36.

    Kellogg RM. The molecules R2CXCR2 including azomethine, carbonyl and thiocarbonyl ylides. Their syntheses, properties and reactions. Tetrahedron. 1976;32:2165–84.

    CAS  Article  Google Scholar 

  37. 37.

    Hosomi A, Matsuyama Y, Sakurai H. Chloromethyl trimethylsilylmethyl sulphide as a parent thiocarbonyl ylide synthon. A simple synthesis of dihydro- and tetrahydro-thiophenes. J Chem Soc, Chem Commun. 1986; 1073–4.

  38. 38.

    Lan Y, Houk KN. Mechanism and stereoselectivity of the stepwise 1,3-dipolar cycloadditions between a thiocarbonyl ylide and electron-deficient dipolarophiles: a computational investigation. J Am Chem Soc. 2010;132:17921–7.

    CAS  Article  Google Scholar 

  39. 39.

    Terao Y, Tanaka M, Imai N, Achiwa K. New generation of thiocarbonyl ylide and its 1,3-cycloaddition leading to tetrahydrothiophene derivatives. Tetrahedron Lett. 1985;25:3011–4.

    Article  Google Scholar 

  40. 40.

    Terao Y, Aono M, Imai N, Achiwa K. Thiocarbonyl ylides. VI. New generation of thiocarbonyl ylides from organosilicon compounds containing sulfur and their 1,3-cycloadditions. Chem Pharm Bull. 1987;35:1734–40.

    CAS  Article  Google Scholar 

  41. 41.

    Terao Y, Aono I, Takahashi I, Achiwa K. Generation of Thioketene s-methylides and their 1,3-cycloadditions. Chem Lett. 1986;15:2089–92.

    Article  Google Scholar 

  42. 42.

    Aono M, Terao Y, Achiwa K. New method for generation of Thiocarbonyl Ylides from Bis(trimethylsilylmethyl)sulfoxides and their application to cycloadditions. Heterocycles . 1995;40:249–60.

    CAS  Article  Google Scholar 

  43. 43.

    Cherney RJ, et al. Conversion of potent MMP inhibitors into selective TACE inhibitors. Bioorg Med Chem Lett. 2006;16:1028–31.

    CAS  Article  Google Scholar 

  44. 44.

    Aono M, Hyodo C, Terao Y, Achiwa K. Generation of thiocarbonyl ylides with release of disiloxane from bis(trimethylsilylmethyl) sulfoxides. Tetrahedron Lett. 1986;27:4039–42.

    CAS  Article  Google Scholar 

  45. 45.

    Frostic FF Jr, Hauser C. Condensations of Esters by Diisopropylaminomagnesium Bromide and Certain Related Reagents. J Am Chem Soc. 1949;71:1350–2.

    Article  Google Scholar 

  46. 46.

    Stoll I, Flament M. Synthèse du « Propylure », phéromone sexuelle de Pectinophora gossypiella SAUNDERS. Helv Chim Acta. 1969;52:1996–2003.

    CAS  Article  Google Scholar 

  47. 47.

    Lehmann F, Holm M, Laufer S. Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles. J Comb Chem. 2008;10:364–7.

    CAS  Article  Google Scholar 

  48. 48.

    Komine K, Nomura Y, Ishihara J, Hatakeyama S. Total synthesis of (−)-N-Methylwelwitindolinone C isothiocyanate based on a Pd-catalyzed tandem enolate coupling strategy. Org Lett. 2015;17:3918–21.

    CAS  Article  Google Scholar 

  49. 49.

    Kou KGM, et al. Syntheses of denudatine diterpenoid alkaloids: cochlearenine, N-Ethyl-1α-hydroxy-17-veratroyldictyzine, and paniculamine. J Am Chem Soc. 2016;138:10830–3.

    CAS  Article  Google Scholar 

  50. 50.

    Mineno M, Sawai Y, Kanno K, Sawada N, Mizufune H. Double reformatsky reaction: divergent synthesis of δ-hydroxy-β-ketoesters. J Org Chem. 2013;78:5843–5850.

    CAS  Article  Google Scholar 

  51. 51.

    Stamhuis EJ, Maas W. Mechanism of enamine reactions. II.1 The hydrolysis of tertiary enamines. J Org Chem. 1965;30:2156–60.

    CAS  Article  Google Scholar 

  52. 52.

    Maas W, Janssen MJ, Stamhuis EJ, Wynberg H. Mechanism of enamine reactions. IV. The hydrolysis of tertiary enamines in acidic medium. J Org Chem. 1967;32:1111–5.

    CAS  Article  Google Scholar 

  53. 53.

    Van der Veen R-H, Geenevasen J-A-J, Cerfontain H. Reactions of α-aryl carbonyl compounds with lithium ester enolates. Can J Chem. 1984;62:2202–5.

    Article  Google Scholar 

  54. 54.

    Hanquet G, Salom-Roig XJ, Lemeitour S, Solladie G. Isomerisation of (E)‐2‐tetrahydrofurylidenealkanecarboxylic Esters and amides into their (Z) isomers by chelation control with metallated bases or Lewis acids. Eur J Org Chem. 2002; 2112–9.

  55. 55.

    Lin R, Cao L, West FG. Medium-sized cyclic ethers via stevens [1,2]-shift of mixed monothioacetal-derived sulfonium ylides: application to formal synthesis of (+)-laurencin. Org Lett. 2017;19:552–5.

    CAS  Article  Google Scholar 

  56. 56.

    Hauptmann H, Walter WF. The action of raney nickel on organic sulfur compounds. Chem Rev. 1962;62:347–404.

    CAS  Article  Google Scholar 

  57. 57.

    Rentner J, Kljajic M, Offner L, Breinbauer R. Recent advances and applications of reductive desulfurization in organic synthesis. Tetrahedron 2014;70:8983–9027.

    CAS  Article  Google Scholar 

  58. 58.

    Timmerman JC, Wood JL. Synthesis and biological evaluation of hippolachnin A analogues. Org Lett. 2018;20:3788–92.

    CAS  Article  Google Scholar 

  59. 59.

    Cernijenko A, Risgaard R, Baran PS. 11-step total synthesis of (−)-maoecrystal V. J Am Chem Soc. 2016;138:9425–9428.

    CAS  Article  Google Scholar 

  60. 60.

    Tian M, Yan M, Baran PS. 11-step total synthesis of araiosamines. J Am Chem Soc. 2016;138:14234–14237.

    CAS  Article  Google Scholar 

  61. 61.

    Rupcic Z, Chepkirui C, Hernández-Restrepo M, Crous PW, Luangsa-ard JJ, Stadler M. New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, Pseudobambusicola thailandica. MycoKeys. 2018;33:1–23.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Peter Mayer for X-ray structure analysis. Additionally, we would like to acknowledge the Deutsche Forschungsgemeinschaft (SFB 749 and CIPSM) for generous funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dirk Trauner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to Prof. Samuel J. Danishefsky with admiration and gratitude.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Winter, N., Rupcic, Z., Stadler, M. et al. Synthesis and biological evaluation of (±)-hippolachnin and analogs. J Antibiot 72, 375–383 (2019). https://doi.org/10.1038/s41429-019-0176-x

Download citation

Further reading

Search