Special Feature Article | Published:

De novo synthesis of novel bacterial monosaccharide fusaminic acid


Fusobacterium nucleatum is an oral bacteria related to various types of diseases. As Gram-negative bacteria, lipopolysaccharide (LPS) of Fusobacterium nucleatum could be a potential virulence factor. Recently, the structure of O-antigen in LPS of Fusobacterium nucleatum strain 25586 was elucidated to contain a trisaccharide repeating unit -(4-β-Nonp5Am-4-α-L-6dAltpNAc3PCho-3-β-D-QuipNAc)-. The nonulosonic acid characterized as 5-acetamidino-3,5,9-trideoxy-L-glycero-L-gluco-non-2-ulosonic acid (named as fusaminic acid), and 2-acetamido-2,6-dideoxy-L-altrose are the novel monosaccharides isolated. Herein we report the de novo synthesis of 5-N-acetyl fusaminic acid and the thioglycoside derivative in order to further investigate the biological significance of nonulosonic acids for bacterial pathogenesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141–7.

  2. 2.

    Moore WEC, Moore LVH. The bacteria of periodontal diseases. Peridontol. 1994;5:66–7.

  3. 3.

    Griffen AL, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.

  4. 4.

    Loozen G, et al. Inter-bacterial correlations in subgingival biofilms: a large-scale survey. J Clin Periodontol. 2014;41:1–10.

  5. 5.

    Saygun I, et al. Salivary infectious agents and periodontal disease status. J Periodontal Res. 2011;46:235–9.

  6. 6.

    Feng X, et al. Detection of eight periodontal microorganisms and distribution of Porphyromonas gingivalis fimA genotypes in chinese patients with aggressive periodontitis. J Periodontol. 2014;85:150–9.

  7. 7.

    Liu P, et al. Detection of Fusobacterium nucleatum and fadA adhesin gene in patients with orthodontic gingivitis and non-orthodontic periodontal inflammation. PLoS ONE. 2014;9:e85280.

  8. 8.

    Yang NY, Zhang Q, Li JL, Yang SH, Shi Q. Progression of periodontal inflammation in adolescents is associated with increased number of Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Fusobacterium nucleatum. Int J Paediatr Dent. 2014;24:226–33.

  9. 9.

    Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PLoS ONE. 2013;8:e71227.

  10. 10.

    Didilescu AC, et al. Investigation of six selected bacterial species in endo-periodontal lesions. Int Endod J. 2012;45:282–93.

  11. 11.

    Fujii R, et al. Characterization of bacterial flora in persistent apical periodontitis lesions. Oral Microbiol Immunol. 2009;24:502–5.

  12. 12.

    Siqueira JF Jr, Rocas IN, Paiva SS, Magalhaes KM, GuimaraesPinto T. Cultivable bacteria in infected root canals as identified by 16S rRNA gene sequencing. Oral Microbiol Immunol. 2007;22:266–71.

  13. 13.

    Han YW. Fusobacterium nucleatum infection with host cells. In: Kolenbrander PE, editor. Oral Microbial Communities: Genomic Inquiry and Interspecies Communication. 1st edn. Washington, DC: ASM Press; 2011. p. 221–32.

  14. 14.

    Han YW, et al. Term stillbirth caused by oral Fusobacterium nucleatum. Obstet Gynecol. 2010;115:442–5.

  15. 15.

    Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol. 2009;47:38–47.

  16. 16.

    Bohrer JC, Kamemoto LE, Almeida PG, Ogasawara KK. Acute chorioamnionitis at term caused by the oral pathogen Fusobacterium nucleatum. Hawaii J Med Public Health. 2012;71:280–1.

  17. 17.

    Dixon NG, Ebright D, Defrancesco MA, Hawkins RE. Orogenital contact: a cause of chorioamnionitis? Obstet Gynecol. 1994;84:654–5.

  18. 18.

    Marchesi JR, et al. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6:e20447.

  19. 19.

    Kostic AD, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.

  20. 20.

    Rubinstein MR, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.

  21. 21.

    Temoin S, et al. Identification of oral bacterial DNA in synovial fluid of patients with arthritis with native and failed prosthetic joints. J Clin Rheumatol. 2012;18:117–21.

  22. 22.

    Brook I. Fusobacterial infections in children. Curr Infect Dis Rep. 2013;15:288–94.

  23. 23.

    Williams MD, Kerber CA, Tergin HF. Unusual presentation of Lemierre’s syndrome due to Fusobacterium nucleatum. J Clin Microbiol. 2003;41:3445–8.

  24. 24.

    Sparks Stein P, et al. 3rd. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement. 2012;8:196–203.

  25. 25.

    Xu M, et al. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282:25000–9.

  26. 26.

    Fardini Y, et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol. 2011;82:1468–80.

  27. 27.

    Onoue S, et al. Serum antibodies of periodontitis patients compared to the lipopolysaccharides of Porphyromoas gingivalis and Fusobacterium nucleatum. Microbiol Immunol. 2003;47:51–5.

  28. 28.

    Vinogradov E, Michael FS, Cox AD. The structure of the LPS O-chain of Fusobacterium nucleatum strain 25586 containing two novel monosaccharides, 2-acetamido-2,6-dideoxy-L-altrose and a 5-acetimidoylamino-3,5,9-trideoxy-gluconon-2-ulosonic acid. Carbohydr Res. 2017;440-441:10–5.

  29. 29.

    Zunk M, Kiefel MJ. The occurrence and biological significance of the a-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria. RSC Adv. 2014;4:3413–21.

  30. 30.

    Liu H, Zhang YF, Wei RH, Andolina G, Li XC. Total synthesis of Pseudomonas aeruginosa 1244 pilin glycan via de novo synthesis of pseudaminic acid. J Am Chem Soc. 2017;139:13420–8.

  31. 31.

    Rotstein BH, Winternheimer DJ, Yin LM, Deber CM, Yudin AK. Thioester-isocyanides: versatile reagents for the synthesis of cycle-tail peptides. Chem Commun. 2012;48:3775–7.

  32. 32.

    Nahm S, Weinreb SM. N-methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 1981;22:3815–8.

  33. 33.

    Nakata T, Tanaka T, Oishi T. Stereoselective reduction of a-hydroxy ketones. Tetrahedron Lett. 1983;24:2653–6.

  34. 34.

    Hoppe D, Schollkopf U. Ethyl 2-oxazoline-5-carboxylate from ethyl isocyanoacetate and carbonyl compounds. Angew Chem Int Ed. 1970;9:300–1.

  35. 35.

    Ito Y, Matasuura T, Saegusa T. ZnCl2 and CuCl promoted aldol reactions of isocyanoacetate with α,β-unsaturated carbonyl compounds. Tetrahedron Lett. 1985;26:5781–4.

  36. 36.

    Kisanga P, Ilankumaran P, Verkade JGP. RNCH2CH2)3N-catalyzed diastereoselective synthesis of ozazolines. Tetrahedron Lett. 2001;42:6263–6.

  37. 37.

    Zhang LJ, et al. Tandan Michael addition/intramolecular isocyanide [3+2] cycloaddition: highly diastereoselective one pot synthesis of fused oxazolines. Chem Commun. 2010;46:3357–9.

  38. 38.

    Matsumoto K, Ozaki Y, Suzuki M, Miyoshi M. A stereoselective synthesis of threo-threonine reaction of isocyanoacetate with acetaldehyde. Agr Biol Chem Tokyo. 1976;40:2045–50.

  39. 39.

    Ito Y, Sawamura M, Hayashi T. Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J Am Chem Soc. 1986;108:6405–6.

  40. 40.

    Evans DA, Janey JM, Magomedov N, Tedrow JS. Chiral salen-aluminum complexes as catalyst for enantioselective aldol reactions of aldehydes and 5-alkoxyozazolines: an efficient approach to the asymmetric synthesis of syn and anti β-hydroxy-α-amino acid derivatives. Angew Chem Int Ed. 2001;40:1884.

  41. 41.

    Adinolfi M, Barone G, Guariniello L, Iadonisi A. Facile cleavage of carbohydrate benzyl ethers and benzylidene acetals using the NaBrO3 Na2S2O4 reagent under two-phase conditions. Tetrahedron Lett. 1999;40:8439–41.

  42. 42.

    Fukuyama T, Lin SC, Li L. Facile reduction of ethyl thiol esters to aldehydes: application to a total synthesis of (+)-neothramycin A methyl ether. J Am Chem Soc. 1990;112:7050–1.

  43. 43.

    Mirza-Aghayan M, Boukherroub R, Bolourtchian M. Palladium-catalyzed protection of alcohols and cleavage of triethylsilyl ethers. J. Organomet. Chem. 2005;9:2372–5.

  44. 44.

    Sheehan JC, Yang DH. The use of N-formamide acids in peptide synthesis. J Am Chem Soc. 1958;80:1154–8.

  45. 45.

    Shen ZL, Wang SY, Chok YK, Xu YH, Loh TP. Organoindium reagents: the preparation and application in organic synthesis. Chem Rev. 2013;113:271–401.

  46. 46.

    Matthies S, Stallforth P, Seeberger PH. Total synthesis of legionaminic acid as basis for serological studies. J Am Chem Soc. 2015;137:2848–51.

  47. 47.

    Lee YJ, Kubota A, Ishiwata A, Ito Y. Synthesis of pseudaminic acid, a unique nonulopyranoside derived from pathogenic bacteria through 6-deoxy-altdiNAc. Tetrahedron Lett. 2011;19:418–21.

  48. 48.

    Knirel YA, Shashkov AS, Tsvetkov YE, Jasson PE, Zahringer U. 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid in bacteria glycopolymers: chemistry and biology. Adv Carb Chem Biochem. 2003;58:371–417.

Download references


This work was supported by the Research Grants Council of Hong Kong (17305615, 17309616, C5026–16G) and the University Grants Committee of Hong Kong (Grant AoE/P-705/16).

Author information

Correspondence to Xuechen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedication: This is dedicated to Professor Samuel. J. Danishefsky for his great scientific contribution to total synthesis of highly complex and biologically important natural products.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

SI De novo synthesis of novel bacteria monosaccharide fusaminic acid

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4