Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A transannular approach toward lycopodine synthesis

Abstract

A transannular reaction was proposed to access the Lycopodium alkaloid lycopodine. A key bicyclic precursor was synthesized via a ring-closing metathesis reaction. Initial evaluations of the transannular aza-Prins reaction to synthesize lycopodine were reported and discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Scheme 3

References

  1. Extracted and adapted from the Master’s thesis of Michaela C. Vertorano, Synthetic study toward lycopodium alkaloids via a common bicyclic intermediate. University at Albany, State University of New York; 2016.

  2. Kobayashi J, Morita H. In: Cordell GA, editor. The Lycopodium Alkaloids: chemistry and biology. Vol. 61. New York: Academic Press; 2005. p. 1–57.

  3. Ayer WA. The Lycopodium alkaloids. Nat Prod Rep. 1991;8:455–63.

    Article  CAS  Google Scholar 

  4. Ayer WA, Trifonov LS. In: Cordell GA, Brossi A, editors. The Lycopodium Alkaloids: chemistry and pharmacology. Vol 45. New York: Academic Press; 1994. p. 233–266.

  5. Hirasawa Y, Kobayashi J, Morita H. The Lycopodium alkaloids. Heterocycles. 2009;77:679–729.

    Article  CAS  Google Scholar 

  6. Siengalewicz P, Mulzer J, Rinner U. Lycopodium alkaloids—synthetic highlights and recent developments. Alkaloids (San Diego, CA, US). 2013;72:1–151.

    CAS  Google Scholar 

  7. Wang X, Li H, Lei X. Challenges and strategies to the total syntheses of fawcettimine-type and serratinine-type lycopodium alkaloids. Synlett. 2013;24:1032–43.

    Article  CAS  Google Scholar 

  8. Murphy RA, Sarpong R. Heathcock-inspired strategies for the synthesis of fawcettimine-type lycopodium alkaloids. Chem Eur J. 2014;20:42–56.

    Article  CAS  Google Scholar 

  9. Yang Y, Dai M. Total syntheses of Lyconadins: finding efficiency and diversity. Synlett. 2014;25:2093–8.

    Article  CAS  Google Scholar 

  10. Saha M, Carter RG. Lycopodium alkaloids: an intramolecular Michael reaction approach. Synlett. 2017;28:2212–29.

    Article  CAS  Google Scholar 

  11. Bödeker K. Lycopodin, das erste Alkaloïd der Gefässkryptogamen. Justus Liebigs Ann Chem. 1881;208:363–7.

    Article  Google Scholar 

  12. Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin. 2006;27:1–26.

    Article  Google Scholar 

  13. He J, et al. Lycojapodine A, a novel alkaloid from Lycopodium japonicum. Org Lett. 2009;11:1397–1400.

    Article  CAS  Google Scholar 

  14. Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J. Lycopladine H, a novel alkaloid with fused-tetracyclic skeleton from Lycopodium complanatum. Tetrahedron Lett. 2009;50:6534–6.

    Article  CAS  Google Scholar 

  15. Ayer WA, Bowman WR, Joseph TC, Smith P. Synthesis of dl-lycopodine. J Am Chem Soc. 1968;90:1648–50.

    Article  CAS  Google Scholar 

  16. Stork G, Kretchmer RA, Schlessinger RH. The stereospecific total synthesis of dl-lycopodine. J Am Chem Soc. 1968;90:1647–8.

    Article  CAS  Google Scholar 

  17. Heathcock CH, Smith KM, Blumenkopf TA. Total synthesis of (+ -.)-fawcettimine (Burnell’s base A). J Am Chem Soc. 1986;108:5022–4.

    Article  CAS  Google Scholar 

  18. Li H, Wang X, Lei X. Total syntheses of Lycopodium alkaloids (+)-fawcettimine, (+)-fawcettidine, and (−)-8-deoxyserratinine. Angew Chem Int Ed. 2011;51:491–5.

    Article  Google Scholar 

  19. Fischer DF, Sarpong R. Total synthesis of (+)-complanadine A using an iridium-catalyzed pyridine C−H functionalization. J Am Chem Soc. 2010;132:5926–7.

    Article  CAS  Google Scholar 

  20. Yuan C, Chang C-T, Axelrod A, Siegel D. Synthesis of (+)-complanadine A, an inducer of neurotrophic factor excretion. J Am Chem Soc. 2010;132:5924–5.

    Article  CAS  Google Scholar 

  21. Reyes E, Uria U, Carrillo L, Vicario JL. Transannular reactions in asymmetric total synthesis. Tetrahedron. 2014;70:9461–84.

    Article  CAS  Google Scholar 

  22. Shigeyama T, Katakawa K, Kogure N, Kitajima M, Takayama H. Asymmetric total syntheses of two phlegmarine-type alkaloids, lycoposerramines-V and -W, newly isolated from Lycopodium serratum. Org Lett. 2007;9:4069–72.

    Article  CAS  Google Scholar 

  23. Evans DA, Scheerer JR. Polycyclic molecules from linear precursors: stereoselective synthesis of clavolonine and related complex structures. Angew Chem Int Ed. 2005;44:6038–42.

    Article  CAS  Google Scholar 

  24. Zhao Y, Chen G. Palladium-catalyzed alkylation of ortho-C(sp2)–H bonds of benzylamide substrates with alkyl halides. Org Lett. 2011;13:4850–3.

    Article  CAS  Google Scholar 

  25. Chemler SR, Trauner D, Danishefsky SJ. The B-alkyl Suzuki–Miyaura cross-coupling reaction: development, mechanistic study, and applications in natural product synthesis. Angew Chem Int Ed. 2001;40:4544–68.

    Article  CAS  Google Scholar 

  26. Li K, Wang C, Yin G, Gao S. Construction of the basic skeleton of ophiobolin A and variecolin. Org Biomol Chem. 2013;11:7550–8.

    Article  CAS  Google Scholar 

  27. Nicolaou KC, Bulger PG, Sarlah D. Metathesis reactions in total synthesis. Angew Chem Int Ed. 2005;44:4490–527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Professor Samuel J. Danishefsky. Start-up funds from SUNY-Albany are greatly acknowledged. Zheng Wei thanks National Science Foundation (Award No. 1337594) for the X-ray diffractometer. We thank NSF for NMR and mass spectrometers (1726724 and 1429329, respectively). We thank Professors Ting Wang and Qiang Zhang, who were postdoctoral scholars in the Danishefsky group, for stimulating discussions. Dr. Ying Wu is thanked for helping in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertorano, M.C., Johnson, K.L., He, P. et al. A transannular approach toward lycopodine synthesis. J Antibiot 72, 494–497 (2019). https://doi.org/10.1038/s41429-019-0155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-019-0155-2

Search

Quick links