Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Total Synthesis of trans-Resorcylide via Macrocyclic Stille Carbonylation

Abstract

The resorcylic macrolides are important natural products with a wide range of remarkable biological activities. So far, most of the reported resorcylic macrolide syntheses use either macrolactonization or ring closing metathesis to build the corresponding macrocycle. In continuation of our efforts in developing novel carbonylation reactions to facilitate natural product total synthesis, we report herein a total synthesis of trans-resorcylide (1) featuring a palladium-catalyzed macrocyclic Stille carbonylation to build its 12-membered macrocycle.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Scheme 1

References

  1. Oyama H, Sassa T, Ikeda M. Structures of new plant growth inhibitors, trans-and cis-resorcylide. Agric Biol Chem. 1978;42:2407–9.

    CAS  Google Scholar 

  2. Barrow CJ. New macrocyclic lactones from a Penicillium species. J Nat Prod. 1997;60:1023–5.

    CAS  Article  Google Scholar 

  3. Delmotte P, Delmotte-Plaquee J. A new antifungal substance of fungal origin. Nature. 1953;171:344.

    CAS  Article  Google Scholar 

  4. Chiosis G, Lucas B, Huezo H, Solit D, Basso A, Rosen N. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr Cancer Drug Tar. 2003;3:371–6.

    CAS  Article  Google Scholar 

  5. Xu L, Wu P, Xue J, Molnar I, Wei X. Antifungal and cytotoxic β-resorcylic acid lactones from a paecilomyces species. J Nat Prod. 2017;80:2215–23.

    CAS  Article  Google Scholar 

  6. Couladouros EA, Mihou AP, Bouzas EA. First total synthesis of trans-and cis-resorcylide: remarkable hydrogen-bond-controlled, stereospecific ring-closing metathesis. Org Lett. 2004;6:977–80.

    CAS  Article  Google Scholar 

  7. Mennen SM, Miller SJ. Development of a bio-inspired acyl-anion equivalent macrocyclization and synthesis of a trans-resorcylide precursor. J Org Chem. 2007;72:5260–9.

    CAS  Article  Google Scholar 

  8. Takahashi T, Minami I, Tsuji J. Synthesis of dehydroxy-trans-resorcylide by intramolecular alkylation of the protected cyanohydrin using a butadiene telomer as a building block. Tetrahedron Lett. 1981;22:2651–4.

    CAS  Article  Google Scholar 

  9. Lampilas M, Lett R. Convergent stereospecific total synthesis of monochiral Monocillin I related macrolides. Tetrahedron Lett. 1992;33:773–6.

    CAS  Article  Google Scholar 

  10. Lampilas M, Lett R. Convergent stereospecific total synthesis of Monocillin I and Monorden (or Radicicol). Tetrahedron Lett. 1992;33:777–80.

    CAS  Article  Google Scholar 

  11. Garbaccio RM, Stachel SJ, Baeschlin DK, Danishefsky SJ. Concise asymmetric syntheses of radicicol and monocillin I. J Am Chem Soc. 2001;123:10903–8.

    CAS  Article  Google Scholar 

  12. Garbaccio RM, Danishefsky SJ. Efficient asymmetric synthesis of radicicol dimethyl ether: a novel application of ring-forming olefin metathesis. Org Lett. 2000;2:3127–9.

    CAS  Article  Google Scholar 

  13. Geng X, Yang Z, Danishefsky SJ. Synthetic development of radicicol and cycloproparadicicol: highly promising anticancer agents targeting Hsp90. Synlett. 2004;8:1325–33.

    Google Scholar 

  14. Barluenga S, Moulin E, Lopez P, Winssinger N. Solution‐ and solid‐phase synthesis of radicicol (monorden) and pochonin C. Chem – Eur J. 2005;11:4935–52.

    CAS  Article  Google Scholar 

  15. Yamamoto K, Garbaccio RM, Stachel SJ, Solit DB, Chiosis G, Rosen N, Danishefsky SJ. Total synthesis as a resource in the discovery of potentially valuable antitumor agents: cycloproparadicicol. Angew Chem Int Ed. 2003;42:1280–4.

    Article  Google Scholar 

  16. Bai Y, Davis DC, Dai M. Natural product synthesis via palladium-catalyzed carbonylation. J Org Chem. 2017;82:2319–28.

    CAS  Article  Google Scholar 

  17. Ma K, Martin BS, Yin X, Dai M. Natural product syntheses via carbonylative cyclizations. Nat Prod Rep. 2019;36:174–219.

    CAS  Article  Google Scholar 

  18. Bai Y, Davis DC, Dai M. Synthesis of Tetrahydropyran/Tetrahydrofuran‐Containing Macrolides by Palladium‐Catalyzed Alkoxycarbonylative Macrolactonizations. Angew Chem Int Ed. 2014;53:6519–22.

    CAS  Article  Google Scholar 

  19. Manoni F, Rumo C, Li L, Harran PG. Unconventional fragment usage enables a concise total synthesis of (−)-callyspongiolide. J Am Chem Soc. 2018;140:1280–4.

    CAS  Article  Google Scholar 

  20. Bai Y, Shen X, Li Y, Dai M. Total synthesis of (−)-spinosyn A via carbonylative macrolactonization. J Am Chem Soc. 2016;138:10838–41.

    CAS  Article  Google Scholar 

  21. Davis DC, Walker KL, Hu C, Zare RN, Waymouth RM, Dai M. Catalytic carbonylative spirolactonization of hydroxycyclopropanols. J Am Chem Soc. 2016;138:10693–9.

    CAS  Article  Google Scholar 

  22. Ma K, Yin X, Dai M. Total syntheses of bisdehydroneostemoninine and bisdehydrostemoninine by catalytic carbonylative spirolactonization. Angew Chem Int Ed. 2018;57:15209–12.

    CAS  Article  Google Scholar 

  23. Davis DC, Hoch DG, Wu L, Abegg D, Martin BS, Zhang Z, Adibekian A, Dai M. Total synthesis, biological evaluation, and target identification of rare abies sesquiterpenoids. J Am Chem Soc. 2018;140:17465–73.

    CAS  Article  Google Scholar 

  24. Gyorkos AC, Stille JK, Hegedus LS. The total synthesis of (±)-epi-jatrophone and (±)-jatrophone using palladium-catalyzed carbonylative coupling of vinyl triflates with vinyl stannanes as the macrocycle-forming step. J Am Chem Soc. 1990;112:8465–72.

    CAS  Article  Google Scholar 

  25. Houghton TJ, Choi S, Rawal VH. Efficient assembly of the phomactin core via two different macrocyclization protocols. Org Lett. 2001;3:3615–7.

    CAS  Article  Google Scholar 

  26. Simon M, Karaghiosoff K, Knochel P. Diastereoselective intramolecular carbolithiations of stereodefined secondary alkyllithiums bearing a remote alkynylsilane. Org Lett. 2018;20:3518–21.

    CAS  Article  Google Scholar 

  27. Choe H, Cho H, Ko H, Lee J. Total synthesis of (+)-pochonin D and (+)-monocillin II via chemo-and regioselective intramolecular nitrile oxide cycloaddition. Org Lett. 2017;19:6004–7.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH R35 GM128570. We thank unrestricted grants from Eli Lilly and Amgen. The NIH P30 CA023168 is acknowledged for supporting shared NMR resources to Purdue Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingji Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedication: This article is dedicated to Professor Samuel J. Danishefsky for his great scientific contributions to total synthesis of highly complex and biologically important natural products.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yin, X. & Dai, M. Total Synthesis of trans-Resorcylide via Macrocyclic Stille Carbonylation. J Antibiot 72, 482–485 (2019). https://doi.org/10.1038/s41429-019-0145-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-019-0145-4

Further reading

Search

Quick links