Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bafilomycin C1 induces G0/G1 cell-cycle arrest and mitochondrial-mediated apoptosis in human hepatocellular cancer SMMC7721 cells

Abstract

Bafilomycin C1, which was isolated from Streptomyces albolongus in our previous work, exhibited strong cytotoxicity against several cancer cell lines. This study aimed to evaluate its antitumor effect on human hepatocellular cancer SMMC7721 cells and the underlying mechanism in vitro and in vivo. MTT assay revealed that bafilomycin C1 retarded SMMC7721 cell growth and proliferation. Western blot and real-time qPCR analysis revealed that bafilomycin C1 caused partial G0/G1 phase cell-cycle arrest, downregulated the expression of cyclin D3, cyclin E1, CDK2, CDK4, and CDK6 and upregulated the expression of p21. Moreover, bafilomycin C1 caused mitochondrial membrane dysfunction through oxidative stress. Furthermore, bafilomycin C1 decreased the expression of Bcl-2; increased the expression of Bax, p53, and P-p53; and increased cleavage of caspase-9 and caspase-3, thereby inducing the intrinsic caspase-dependent apoptotic pathway. In vivo experiments in mice suggested that bafilomycin C1 suppressed tumor growth with few side effects. Cell-cycle arrest and induced apoptosis in tumor tissues in a mouse model treated with bafilomycin C1 were demonstrated by histological analyses, western blot and TUNEL. These findings indicate that bafilomycin C1 may be a promising candidate for hepatic cellular cancer therapy.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene. 2006;25:3866–84.

    Article  PubMed  CAS  Google Scholar 

  2. Forner A, Bruix J. Ablation for hepatocellular carcinoma: is there need to have a winning technique. J Hepatol. 2010;52:310–2.

    Article  PubMed  Google Scholar 

  3. Crissien AM, Frenette C. Current management of hepatocellular carcinoma. Gastroenterol Hepatol. 2014;10:153–61.

    Google Scholar 

  4. Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J Hepatol. 2012;56:267–75.

    Article  PubMed  Google Scholar 

  5. Ding N, et al. Bafilomycins and odoriferous sesquiterpenoids from Streptomyces albolongus isolated from Elephas maximus feces. J Nat Prod. 2016;79:799–805.

    Article  PubMed  CAS  Google Scholar 

  6. Werner G, Hagenmaier H, Drautz H, Baumgartner. A, Zähner H. Bafilomycins, a new group of marcrolide antibiotics. J Antibiot. 1984;37:110–7.

    Article  PubMed  CAS  Google Scholar 

  7. Moon SS, Hwang WH, Chung YR, Shin J. New cytotoxic bafilomycin C1-amide produced by Kitasatospora cheerisanensis. J Antibiot. 2003;56:856–61.

    Article  PubMed  CAS  Google Scholar 

  8. Carr G, et al. Bafilomycins produced in culture by Streptomyces spp. isolated from marine habitats are potent inhibitors of autophagy. J Nat Prod. 2010;73:422–7.

    Article  PubMed  CAS  Google Scholar 

  9. Muench SP, et al. PA1b inhibitor binding to subunits C and E of the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem. 2014;289:16399–408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Su H, et al. Bafilomycin C1 exert antifungal effect through disturbing sterol biosynthesis in Candida albicans. J Antibiot. 2018;71:467–76.

    Article  PubMed  CAS  Google Scholar 

  11. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69:581–93.

    Article  PubMed  CAS  Google Scholar 

  12. Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer. 2008;98:824–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li M, et al. Bigelovin triggered apoptosis in colorectal cancer in vitro and in vivo via upregulating death receptor 5 and reactive oxidative species. Sci Rep. 2017;7:42176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184:39–51.

    Article  PubMed  CAS  Google Scholar 

  15. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5:415–8.

    Article  PubMed  CAS  Google Scholar 

  16. Ma J, et al. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway. Exp Cell Res. 2010;316:2340–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li Y, et al. Activation of sirtuin 3 by silybin attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Front Pharmacol. 2017;8:178.

    PubMed  PubMed Central  Google Scholar 

  18. Bi X, et al. Anti-inflammatory effects, SAR, and action mechanism of monoterpenoids from Radix Paeoniae Alba on LPS-stimulated RAW 264.7 cells. Molecules. 2017;22:e715.

    Article  PubMed  CAS  Google Scholar 

  19. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jiang X, et al. Diallyl trisulfide inhibits growth of NCI-H460 in vitro and in vivo, and ameliorates cisplatin-induced oxidative injury in the treatment of lung carcinoma in xenograft mice. Int J Biol Sci. 2017;13:167–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Guo ZL, et al. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol. 2016;9:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Häcker G. The morphology of apoptosis. Cell Tissue Res. 2000;301:5–17.

    Article  PubMed  Google Scholar 

  23. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.

    Article  PubMed  CAS  Google Scholar 

  24. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  PubMed  CAS  Google Scholar 

  25. Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11:211–9.

    PubMed  Google Scholar 

  26. Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999;287:821–8.

    Article  PubMed  CAS  Google Scholar 

  27. Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226:352–64.

    Article  PubMed  CAS  Google Scholar 

  28. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci. 2005;30:630–41.

    Article  PubMed  CAS  Google Scholar 

  29. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cel Biol. 1998;18:753–61.

    Article  CAS  Google Scholar 

  30. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98:859–69.

    Article  PubMed  CAS  Google Scholar 

  31. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article  PubMed  CAS  Google Scholar 

  32. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Weedon D, Searle J, Kerr JF. Apoptosis. Its nature and implications for dermatopathology. Am J Dermatopathol. 1979;1:133–44.

    Article  PubMed  CAS  Google Scholar 

  34. Hu C, et al. E Platinum, a newly synthesized platinum compound, induces autophagy via inhibiting phosphorylation of mTOR in gastric carcinoma BGC-823 cells. Toxicol Lett. 2012;210:78–86.

    Article  PubMed  CAS  Google Scholar 

  35. He. H, et al. Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-κB survival pathway in A375-S2 cells. J Ethnopharmacol. 2013;148:544–55.

    Article  PubMed  CAS  Google Scholar 

  36. Gundala SR, et al. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol Appl Pharm. 2014;280:86–96.

    Article  CAS  Google Scholar 

  37. Yu MO, et al. Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma. J Neurooncol. 2015;125:55–63.

    Article  PubMed  CAS  Google Scholar 

  38. Tang Q, et al. Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Lett. 2013;336:325–37.

    Article  PubMed  CAS  Google Scholar 

  39. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biol. 2016;37:8471–86.

    Article  CAS  Google Scholar 

  40. Chen T, Zheng W, Wong YS, Yang F. Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induces by a novel selenadiazole derivative. Biomed Pharmacother. 2008;62:77–84.

    Article  PubMed  CAS  Google Scholar 

  41. Wang F, et al. Salinomycin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. PLoS ONE. 2012;7:e50638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fulda S. Targeting extrinsic apoptosis in cancer: challenges and opportunities. Semin Cell Dev Biol. 2015;39:84–88.

    Google Scholar 

  43. Geng YD, et al. Icariside II-induced mitochondrion and lysosome mediated apoptosis is counterbalanced by an autophagic salvage response in hepatoblastoma. Cancer Lett. 2015;366:19–31.

    Article  PubMed  CAS  Google Scholar 

  44. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326:1–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds. 2005;4:138–44.

    Article  PubMed  Google Scholar 

  47. Amaral JD, Castro RE, Steer CJ, Rodrigues CM. P53 and the regulation of hepatocyte apoptosis: implication for disease pathogenesis. Trends Mol Med. 2009;15:531–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Grant No. 81573327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Han or Xueshi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Han, L., Ding, N. et al. Bafilomycin C1 induces G0/G1 cell-cycle arrest and mitochondrial-mediated apoptosis in human hepatocellular cancer SMMC7721 cells. J Antibiot 71, 808–817 (2018). https://doi.org/10.1038/s41429-018-0066-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-018-0066-7

Further reading

Search

Quick links